Vis enkel innførsel

dc.contributor.authorDias, A.
dc.contributor.authorBundaleska, N.
dc.contributor.authorFelizardo, E.
dc.contributor.authorTsyganov, D.
dc.contributor.authorAlmeida, A.
dc.contributor.authorFerraria, A.M.
dc.contributor.authorBotelho do Rego, do
dc.contributor.authorAbrashev, M.
dc.contributor.authorStrunskus, Th.
dc.contributor.authorSanthosh, N.M.
dc.contributor.authorCvelbar, U.
dc.contributor.authorZavašnik, J.
dc.contributor.authorMontemor, M.F.
dc.contributor.authorAlmeida, M.M.
dc.contributor.authorCarvalho, Patrícia A.
dc.contributor.authorKissovski, J.
dc.contributor.authorAlves, L.L.
dc.contributor.authorTatarova, E.
dc.date.accessioned2022-03-02T07:57:58Z
dc.date.available2022-03-02T07:57:58Z
dc.date.created2021-12-03T11:17:23Z
dc.date.issued2021
dc.identifier.citationChemical Engineering Journal. 2021, 430 (4), .en_US
dc.identifier.issn1385-8947
dc.identifier.urihttps://hdl.handle.net/11250/2982270
dc.description.abstractHybrid graphene-based nanostructures are considered promising materials for energy storage applications. However, the synthesis of high-quality hybrid graphene nanostructures at high yields is challenging. In the present work we propose a novel, single-step microwave plasma-enabled approach to synthetize customizable hybrid graphene-based nanostructures at high-yield while preserving their quality. Hybrid N-graphene (nitrogen-doped graphene) metal-based nanostructures, for instance, can be produced at a rate of ∼ 19 mg/min. The high energy density region of a microwave plasma provides sufficient energy and “building particles” fluxes towards the low-energy density plasma afterglow for the processes of assembly and growth of N-graphene sheets. Simultaneously, a controlled jet of metal-oxide(-sulfide) microparticles is sprayed into the plasma afterglow region where they bind to N-graphene sheets. Methane/methylamine are used as carbon and nitrogen precursors, combined with micron-sized MnO2 and oxy-MnS particles to synthesize the hybrid structures. As a result, nano-sized (∼10–30 nm) MnOx particles decorated N-graphene (4.6 at. N%) and oxidized metal sulfide anchored N-graphene sheets (3.1 at. N%) are produced at atmospheric conditions. High structural quality and distribution of metal-based nanostructures on N-graphene sheets are revealed using transmission and scanning electron microscopes and other advanced spectroscopic techniques. Finally, an electrode for supercapacitor based on the N-graphene-metal-oxide(sulfide) hybrid nanostructures is developed with promising specific capacitances (∼273 F.g−1 at 0.5 A.g−1). The described chemically engineered process is one of the fastest approaches reported for designing the high-quality hybrid nanostructures produced at a high-yield, and as such, is expected to provide a high impact on the design of electrode materials for sustainable energy storage systems.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectHybrid nanostructuresen_US
dc.subjectPlasma-based synthesisen_US
dc.subjectN-grapheneen_US
dc.subjectMicrowave plasmasen_US
dc.titleN-Graphene-Metal-Oxide(Sulfide) hybrid Nanostructures: Single-step plasma-enabled approach for energy storage applicationsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licenseen_US
dc.source.pagenumber13en_US
dc.source.volume430en_US
dc.source.journalChemical Engineering Journalen_US
dc.source.issue4en_US
dc.identifier.doi10.1016/j.cej.2021.133153
dc.identifier.cristin1964121
dc.relation.projectNorges forskningsråd: 197405en_US
dc.source.articlenumber133153en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal