Vis enkel innførsel

dc.contributor.authorEvans, Donald
dc.contributor.authorHolstad, Theodor Secanell
dc.contributor.authorMosberg, Aleksander Buseth
dc.contributor.authorSmåbråten, Didrik Rene
dc.contributor.authorVullum, Per Erik
dc.contributor.authorDadlani, Anup
dc.contributor.authorShapovalov, Konstantin
dc.contributor.authorYan, Zewu
dc.contributor.authorBourret, Edith
dc.contributor.authorGao, David Zhe
dc.contributor.authorAkola, Jaakko
dc.contributor.authorTorgersen, Jan
dc.contributor.authorVan Helvoort, Antonius
dc.contributor.authorSelbach, Sverre Magnus
dc.contributor.authorMeier, Dennis
dc.date.accessioned2022-01-05T08:01:41Z
dc.date.available2022-01-05T08:01:41Z
dc.date.created2020-09-04T11:06:50Z
dc.date.issued2020
dc.identifier.citationNature Materials. 2020, 19 1195-1200.en_US
dc.identifier.issn1476-1122
dc.identifier.urihttps://hdl.handle.net/11250/2836078
dc.description.abstractUtilizing quantum effects in complex oxides, such as magnetism, multiferroicity and superconductivity, requires atomic-level control of the material’s structure and composition. In contrast, the continuous conductivity changes that enable artificial oxide-based synapses and multiconfigurational devices are driven by redox reactions and domain reconfigurations, which entail long-range ionic migration and changes in stoichiometry or structure. Although both concepts hold great technological potential, combined applications seem difficult due to the mutually exclusive requirements. Here we demonstrate a route to overcome this limitation by controlling the conductivity in the functional oxide hexagonal Er(Mn,Ti)O3 by using conductive atomic force microscopy to generate electric-field induced anti-Frenkel defects, that is, charge-neutral interstitial–vacancy pairs. These defects are generated with nanoscale spatial precision to locally enhance the electronic hopping conductivity by orders of magnitude without disturbing the ferroelectric order. We explain the non-volatile effects using density functional theory and discuss its universality, suggesting an alternative dimension to functional oxides and the development of multifunctional devices for next-generation nanotechnology.en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.titleConductivity control via minimally invasive anti-Frenkel defects in a functional oxideen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2020. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: http://dx.doi.org/10.1038/s41563-020-0765-xen_US
dc.source.pagenumber1195-1200en_US
dc.source.volume19en_US
dc.source.journalNature Materialsen_US
dc.identifier.doi10.1038/s41563-020-0765-x
dc.identifier.cristin1827326
dc.relation.projectNorges forskningsråd: NorFaben_US
dc.relation.projectNorges teknisk-naturvitenskapelige universitet: Onsager Fellowship Programmeen_US
dc.relation.projectNotur/NorStore: NN9264Ken_US
dc.relation.projectNorges forskningsråd: 275139en_US
dc.relation.projectNORTEM: 197405en_US
dc.relation.projectNorges forskningsråd: 274459en_US
dc.relation.projectNorges forskningsråd: 245963en_US
dc.relation.projectNorges forskningsråd: 231430en_US
dc.relation.projectNotur/NorStore: ntnu243en_US
dc.relation.projectNorges teknisk-naturvitenskapelige universitet: NTNU Stjerneprogrammeten_US
dc.relation.projectEC/H2020/724529en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel