Vis enkel innførsel

dc.contributor.authorJackson, Colleen
dc.contributor.authorSmith, Graham T.
dc.contributor.authorMpofu, Nobuhle
dc.contributor.authorDawson, Jack M. S.
dc.contributor.authorKhoza, Thulile
dc.contributor.authorSeptember, Caelin
dc.contributor.authorTaylor, Susan M.
dc.contributor.authorInwood, David W.
dc.contributor.authorLeach, Andrew S.
dc.contributor.authorKramer, Denis
dc.contributor.authorRussell, Andrea E.
dc.contributor.authorKucernak, Anthony R. J.
dc.contributor.authorLevecque, Pieter B. J.
dc.date.accessioned2021-08-18T09:08:57Z
dc.date.available2021-08-18T09:08:57Z
dc.date.created2021-02-16T16:35:32Z
dc.date.issued2020
dc.identifier.citationRSC Advances. 2020, 10 (34), 19982-19996.en_US
dc.identifier.issn2046-2069
dc.identifier.urihttps://hdl.handle.net/11250/2770037
dc.description.abstractA simple, modified Metal–Organic Chemical Deposition (MOCD) method for Pt, PtRu and PtCo nanoparticle deposition onto a variety of support materials, including C, SiC, B4C, LaB6, TiB2, TiN and a ceramic/carbon nanofiber, is described. Pt deposition using Pt(acac)2 as a precursor is shown to occur via a mixed solid/liquid/vapour precursor phase which results in a high Pt yield of 90–92% on the support material. Pt and Pt alloy nanoparticles range 1.5–6.2 nm, and are well dispersed on all support materials, in a one-step method, with a total catalyst preparation time of ∼10 hours (2.4–4× quicker than conventional methods). The MOCD preparation method includes moderate temperatures of 350 °C in a tubular furnace with an inert gas supply at 2 bar, a high pressure (2–4 bar) compared to typical MOCVD methods (∼0.02–10 mbar). Pt/C catalysts with Pt loadings of 20, 40 and 60 wt% were synthesised, physically characterised, electrochemically characterised and compared to commercial Pt/C catalysts. TEM, XRD and ex situ EXAFS show similar Pt particle sizes and Pt particle shape identifiers, namely the ratio of the third to first Pt coordination numbers modelled from ex situ EXAFS, between the MOCD prepared catalysts and commercial catalysts. Moreover, electrochemical characterisation of the Pt/C MOCD catalysts obtained ORR mass activities with a maximum of 428 A gPt−1 at 0.9 V, which has similar mass activities to the commercial catalysts (80–160% compared to the commercial Pt/C catalysts).en_US
dc.language.isoengen_US
dc.publisherRoyal society of chemistryen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleA quick and versatile one step metal-organic chemical deposition method for supported Pt and Pt-alloy catalystsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© The Royal Society of Chemistry 2020en_US
dc.source.pagenumber19982-19996en_US
dc.source.volume10en_US
dc.source.journalRSC Advancesen_US
dc.source.issue34en_US
dc.identifier.doi10.1039/d0ra03001e
dc.identifier.cristin1890542
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal