Vis enkel innførsel

dc.contributor.authorNikolaeva, Daria
dc.contributor.authorLoïs, Sandrine
dc.contributor.authorDahl, Paul Inge
dc.contributor.authorSandru, Marius
dc.contributor.authorJaschik, Jolanta
dc.contributor.authorTanczyk, Marek
dc.contributor.authorFuoco, Alessio
dc.contributor.authorJansen, Johannes Carolus
dc.contributor.authorVankelecom, Ivo F. J.
dc.date.accessioned2021-08-18T09:08:23Z
dc.date.available2021-08-18T09:08:23Z
dc.date.created2021-02-25T12:30:55Z
dc.date.issued2020
dc.identifier.citationApplied Sciences. 2020, 10 (11), .en_US
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/11250/2770034
dc.description.abstractA poly(ionic-liquid) (PIL) matrix can be altered by incorporating additives that will disrupt the polymer chain packing, such as an ionic liquid (IL) and inorganic salts to boost their exploitation as materials for membrane production to be used in CO2 capture. Herein, potential of PIL/IL/salt blends is investigated on the example of poly(diallyldimethyl ammonium) bis(trifluoromethylsulfonyl)imide (P[DADMA][Tf2N]) with N-butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ([Pyrr14][Tf2N]) and zinc di-bis(trifluoromethylsulfonyl)imide (Zn[Tf2N]2). Composite material with IL and a higher amount of Zn2+ showed an increase in the equilibrium CO2 sorption capacity to 2.77 cm3 (STP)cm −3 bar−1. Prepared blends were successfully processed into thick, dense membranes and thin-film composite membranes. Their CO2 separation efficiency was determined using ideal and mixed-gas feed (vol% CO2 =50 , dry and with 90% relative humidity). The dominant role of solubility in the transport mechanism is confirmed by combining direct gravimetric sorption measurements and indirect estimations from time-lag experiments. The maximum incorporated amount of Zn2+ salts increased equilibrium solubility selectivity by at least 50% in comparison to the parent PIL. All materials showed increased CO2 permeance values by at least 30% in dry conditions, and 60% in humidified conditions when compared to the parent PIL; the performance of pure PIL remained unchanged upon addition of water vapor to the feed stream. Mixed-gas selectivities for all materials rose by 10% in humidified conditions when compared to dry feed experiments. Our results confirm that the addition of IL improves the performance of PIL-based composites due to lower stiffness of the membrane matrix. The addition of Zn2+-based salt had a marginal effect on CO2 separation efficiency, suggesting that the cation participates in the facilitated transport of CO2.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectpolymeric membranesen_US
dc.subjectzincen_US
dc.subjectrelative humidity;en_US
dc.subjectthin-film composites;en_US
dc.subjectCO2 transport;en_US
dc.subjectpoly(ionic liquid);en_US
dc.subjectflue gas;en_US
dc.titleWater Vapour Promotes CO2 Transport in Poly(ionic liquid)/Ionic Liquid-Based Thin-Film Composite Membranes Containing Zinc Salt for Flue Gas Treatmenten_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_US
dc.source.pagenumber19en_US
dc.source.volume10en_US
dc.source.journalApplied Sciencesen_US
dc.source.issue11en_US
dc.identifier.doi10.3390/app10113859
dc.identifier.cristin1893668
dc.source.articlenumber3859en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal