Vis enkel innførsel

dc.contributor.authorGruben, Gaute
dc.contributor.authorDillingh, Bert
dc.contributor.authorKaldal, Gunnar Skulason
dc.contributor.authorHoang, Nguyen-Hieu
dc.contributor.authorWollenweber, Jens
dc.contributor.authorRørvik, Gisle
dc.contributor.authorThorbjornsson, Ingólfur Ö
dc.contributor.authorNyhus, Bård
dc.date.accessioned2021-08-16T11:44:19Z
dc.date.available2021-08-16T11:44:19Z
dc.date.created2021-02-17T16:42:58Z
dc.date.issued2021
dc.identifier.citationGeothermics. 2021, 89 .en_US
dc.identifier.issn0375-6505
dc.identifier.urihttps://hdl.handle.net/11250/2768007
dc.description.abstractUltra-high temperature geothermal wells (>450 °C) have a large potential for increased energy yield as compared to conventional high-temperature geothermal wells (200-300 °C), but several research challenges must be resolved before robust operation in this temperature range can be achieved. In this study, yield- and tensile strength data for several relevant carbon steels and corrosion resistant alloys are generated as a step on the way to enable design of collapse- and tensile capacity for geothermal casings exposed to temperatures up to 500-550 °C. The experiments extend the data set listed in NZS 2403:2015 by providing data for higher temperatures and different material classes. It is found that the carbon steels follow the same near linear decay in strength as the NZS 2403:2015 curves up to 350 °C, and then display a significant drop in tensile strength at higher temperatures, particularly for the lower strength steels. The alloys with high nickel content work harden significantly more than the carbon steels at high temperatures and they tend to retain their strength at temperatures above 350 °C. The tested titanium alloy shows high yield strength and low work-hardening at 500 °C and in contrast to the tested nickel alloys, do not display dynamic strain ageing.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjecthigh-temperature engineeringen_US
dc.subjectcasing materialsen_US
dc.subjectGeothermal energyen_US
dc.titleThermo-mechanical tensile testing of geothermal casing materialsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s). Published by Elsevier Ltd.en_US
dc.source.pagenumber15en_US
dc.source.volume89en_US
dc.source.journalGeothermicsen_US
dc.identifier.doi10.1016/j.geothermics.2020.101944
dc.identifier.cristin1891031
dc.relation.projectNorges forskningsråd: 269399en_US
dc.source.articlenumber101944en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal