Vis enkel innførsel

dc.contributor.authorAasen, Ailo
dc.contributor.authorHammer, Morten
dc.contributor.authorLasala, Silvia
dc.contributor.authorJaubert, Jean-Noël
dc.contributor.authorWilhelmsen, Øivind
dc.date.accessioned2021-06-16T09:02:32Z
dc.date.available2021-06-16T09:02:32Z
dc.date.created2020-08-19T09:45:51Z
dc.date.issued2020
dc.identifier.citationFluid Phase Equilibria. 2020, 524 .en_US
dc.identifier.issn0378-3812
dc.identifier.urihttps://hdl.handle.net/11250/2759714
dc.description.abstractCubic equations of state have thus far yielded poor predictions of the thermodynamic properties of quantum fluids such as hydrogen, helium and deuterium at low temperatures. Furthermore, the shape of the optimal α functions of helium and hydrogen have been shown to not decay monotonically as for other fluids. In this work, we derive temperature-dependent quantum corrections for the covolume parameter of cubic equations of state by mapping them onto the excluded volumes predicted by quantum-corrected Mie potentials. Subsequent regression of the Twu α function recovers a near classical behavior with a monotonic decay for most of the temperature range. The quantum corrections result in a significantly better accuracy, especially for caloric properties. While the average deviation of the isochoric heat capacity of liquid hydrogen at saturation exceeds 80% with the present state-of-the-art, the average deviation is 4% with quantum corrections. Average deviations for the saturation pressure are well below 1% for all four fluids. Using Peneloux volume shifts gives average errors in saturation densities that are below 2% for helium and about 1% for hydrogen, deuterium and neon. Parameters are presented for two cubic equations of state: Peng–Robinson and Soave–Redlich– Kwong. The quantum-corrected cubic equations of state are also able to reproduce the vapor–liquid equilibrium of binary mixtures of quantum fluids, and they are the first cubic equations of state that are able to accurately model the vapor-liquid equilibrium of the helium–neon mixture. Similar to the quantum-corrected Mie potentials that were used to develop the covolume corrections, an interaction parameter for the covolume is needed to represent the helium–hydrogen mixture to a high accuracy. The quantumcorrected cubic equation of state paves the way for technological applications of quantum fluids that require models with both high accuracy and computational speed.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectCubic equation of stateen_US
dc.subjectQuantum correctionsen_US
dc.subjectHydrogenen_US
dc.subjectHeliumen_US
dc.subjectDeuteriumen_US
dc.subjectNeonen_US
dc.titleAccurate quantum-corrected cubic equations of state for helium, neon, hydrogen, deuterium and their mixturesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe Authorsen_US
dc.source.pagenumber12en_US
dc.source.volume524en_US
dc.source.journalFluid Phase Equilibriaen_US
dc.identifier.doi10.1016/j.fluid.2020.112790
dc.identifier.cristin1823967
dc.source.articlenumber112790en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal