Vis enkel innførsel

dc.contributor.authorGuerrero Heredia, Gabriel
dc.contributor.authorHagg, May-Britt
dc.contributor.authorSimon, Christian
dc.contributor.authorPeters, Thijs
dc.contributor.authorRival, Nicolas
dc.contributor.authorDenonville, Christelle
dc.date.accessioned2020-12-30T11:07:23Z
dc.date.available2020-12-30T11:07:23Z
dc.date.created2018-06-10T23:01:10Z
dc.date.issued2018
dc.identifier.citationMembranes. 2018, 8 (28), 1-17.en_US
dc.identifier.issn2077-0375
dc.identifier.urihttps://hdl.handle.net/11250/2721117
dc.description.abstractIn this article, we studied two different types of polyhedral oligomeric silsesquioxanes (POSS®) functionalized nanoparticles as additives for nanocomposite membranes for CO2 separation. One with amidine functionalization (Amidino POSS®) and the second with amine and lactamide groups functionalization (Lactamide POSS®). Composite membranes were produced by casting a polyvinyl alcohol (PVA) layer, containing either amidine or lactamide functionalized POSS® nanoparticles, on a polysulfone (PSf) porous support. FTIR characterization shows a good compatibility between the nanoparticles and the polymer. Differential scanning calorimetry (DSC) and the dynamic mechanical analysis (DMA) show an increment of the crystalline regions. Both the degree of crystallinity (Xc) and the alpha star transition, associated with the slippage between crystallites, increase with the content of nanoparticles in the PVA selective layer. These crystalline regions were affected by the conformation of the polymer chains, decreasing the gas separation performance. Moreover, lactamide POSS® shows a higher interaction with PVA, inducing lower values in the CO2 flux. We have concluded that the interaction of the POSS® nanoparticles increased the crystallinity of the composite membranes, thereby playing an important role in the gas separation performance. Moreover, these nanocomposite membranes did not show separation according to a facilitated transport mechanism as expected, based on their functionalized amino-groups, thus, solution-diffusion was the main mechanism responsible for the transport phenomena.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCo2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS® Nanoparticles into a PVA Layeren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.source.pagenumber1-17en_US
dc.source.volume8en_US
dc.source.journalMembranesen_US
dc.source.issue28en_US
dc.identifier.doi10.3390/membranes8020028
dc.identifier.cristin1590288
dc.source.articlenumber28en_US
cristin.unitcode7401,80,64,0
cristin.unitcode7401,80,62,0
cristin.unitnameMaterialer og nanoteknologi
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal