Vis enkel innførsel

dc.contributor.authorPolfus, Jonathan M.
dc.contributor.authorYang, Jing
dc.contributor.authorYildiz, Bilge
dc.date.accessioned2020-12-28T13:50:11Z
dc.date.available2020-12-28T13:50:11Z
dc.date.created2018-12-13T11:05:31Z
dc.date.issued2018
dc.identifier.citationJournal of Materials Chemistry A. 2018, 6 24823-24830.en_US
dc.identifier.issn2050-7488
dc.identifier.urihttps://hdl.handle.net/11250/2721035
dc.description.abstractThe present work quantifies the equilibrium defect and adsorbate chemistry on oxide surfaces in the presence of multiple gas components at elevated temperatures and sub-surface space charge. The concentrations of chemisorbed H2O and CO2 as well as surface protons and oxygen vacancies were calculated for Y-doped BaZrO3 using a thermodynamic framework with input from first-principles calculations. The overall energy of the system was minimized based on contributions from gas adsorption, interactions between defects and adsorbates, segregation of point defects and space-charge formation, as well as configurational entropy. The coverage dependent adsorption energies were found as −1.44 + 0.34ΘH2O eV and −2.25 + 1.21ΘCO2 eV for chemisorption of H2O and CO2, respectively. The interaction between the adsorbates was found to follow 1.72ΘH2OΘCO2 eV. The coverage of surface protons was above 0.3 up to 1000 K under most considered conditions (0.01–1 bar H2O, 4 × 10−4–1 bar CO2) due to a favorable interaction with both surface hydroxide and CO2 adsorbates. Most importantly, the results show that the coadsorption, adsorbate interactions or space-charge formation each played a major role in the obtained defect concentrations and surface coverages. Thus, the approach in this work demonstrates the importance of considering quantitatively each of these aspects in obtaining accurately the surface equilibria on complex catalytic oxides.en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistry Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleInterplay between H2O and CO2 coadsorption and space-charge on Y-doped BaZrO3 surfacesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderOpen Access Article. Published on 19 November 2018. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.en_US
dc.source.pagenumber24823-24830en_US
dc.source.volume6en_US
dc.source.journalJournal of Materials Chemistry Aen_US
dc.identifier.doi10.1039/C8TA09491H
dc.identifier.cristin1642589
dc.relation.projectNorges forskningsråd: 228355en_US
dc.relation.projectNorges forskningsråd: 257579en_US
dc.relation.projectNotur/NorStore: nn9259ken_US
cristin.unitcode7401,80,62,0
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal