Vis enkel innførsel

dc.contributor.authorTobiesen, Finn Andrew
dc.contributor.authorHaugen, Geir
dc.contributor.authorHartono, Ardi
dc.date.accessioned2020-12-28T13:26:32Z
dc.date.available2020-12-28T13:26:32Z
dc.date.created2018-07-09T13:23:17Z
dc.date.issued2018
dc.identifier.citationApplied Energy. 2018, 211 161-173.en_US
dc.identifier.issn0306-2619
dc.identifier.urihttps://hdl.handle.net/11250/2721023
dc.description.abstractProcess simulation is used for energetic evaluation of two novel strong bicarbonate forming solvents for post combustion CO2 capture, intended for coal- and natural gas based exhaust streams. An evaluation framework has been developed where process energy sinks are coupled to process energy balances based on the basic principles of a thermal heat engine. This procedure enables coupling of detailed solvent properties, such as reaction enthalpy, VLE, and kinetics, with the overall process operation, while accounting for the magnitude of the energy sinks in the process. The method identifies areas where there may be room for potential improvement, shows how the fundamental chemical properties of the solvents give rise to the overall capture potential, and highlights interdependencies between major energy sinks in the process. This framework is then used to clarify where heat is spent in the process for two novel solvent systems: activated 2-Piperidineethanol (2-PPE) and 1-(2-Hydroxyethyl)pyrrolidine (1-(2HE)PRLD). These novel solvents are compared with a base case of MEA and Cesar1. Activated 2-Piperidineethanol showed the best performance for the process setup evaluated in this work. The regenerative efficiency parameter for this solvent is 66% with an optimum specific reboiler duty of 2.78 MJ/kg CO2 removed; a 22% reduction compared to MEA in the coal case. Furthermore, the solvent seems to be sufficiently fast to be used in an industrial absorber and is a promising system for post combustion CO2 capture. This results in a power plant specific energy penalty for avoided CO2 of 0.27 kWhel/kg CO2. The evaluation framework can also identify the potential for additional energy improvements by economizing configurations for improved internal heat distribution.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectthermodynamicsen_US
dc.subjectprocess optimizationen_US
dc.subjectsolvent developmenten_US
dc.subjectprocess modellingen_US
dc.subjectCO2 captureen_US
dc.titleA systematic procedure for process energy evaluation for post combustion CO2 capture: Case study of two novel strong bicarbonate-forming solventsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2018. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber161-173en_US
dc.source.volume211en_US
dc.source.journalApplied Energyen_US
dc.identifier.doi10.1016/j.apenergy.2017.10.091
dc.identifier.cristin1596376
cristin.unitcode7401,80,40,0
cristin.unitnameProsessteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal