Vis enkel innførsel

dc.contributor.authorSulheim, Einar
dc.contributor.authorKim, Jana
dc.contributor.authorvan Wamel, Annemieke
dc.contributor.authorKim, Eugene
dc.contributor.authorSnipstad, Sofie
dc.contributor.authorVidic, Igor
dc.contributor.authorGrimstad, Ingeborg
dc.contributor.authorWiderøe, Marius
dc.contributor.authorTorp, Sverre Helge
dc.contributor.authorLundgren, Steinar
dc.contributor.authorWaxman, David J.
dc.contributor.authorDavies, Catharina de Lange
dc.date.accessioned2020-12-28T13:26:25Z
dc.date.available2020-12-28T13:26:25Z
dc.date.created2018-07-03T14:32:59Z
dc.date.issued2018
dc.identifier.citationJournal of Controlled Release. 2018, 279 292-305.en_US
dc.identifier.issn0168-3659
dc.identifier.urihttps://hdl.handle.net/11250/2721022
dc.description.abstractPreclinical research has demonstrated that nanoparticles and macromolecules can accumulate in solid tumors due to the enhanced permeability and retention effect. However, drug loaded nanoparticles often fail to show increased efficacy in clinical trials. A better understanding of how tumor heterogeneity affects nanoparticle accumulation could help elucidate this discrepancy and help in patient selection for nanomedicine therapy. Here we studied five human tumor models with varying morphology and evaluated the accumulation of 100 nm polystyrene nanoparticles. Each tumor model was characterized in vivo using micro-computed tomography, contrast-enhanced ultrasound and diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging. Ex vivo, the tumors were sectioned for both fluorescence microscopy and histology. Nanoparticle uptake and distribution in the tumors were generally heterogeneous. Density of functional blood vessels measured by fluorescence microscopy correlated significantly (p = 0.0056) with nanoparticle accumulation and interestingly, inflow of microbubbles measured with ultrasound also showed a moderate but significant (p = 0.041) correlation with nanoparticle accumulation indicating that both amount of vessels and vessel morphology and perfusion predict nanoparticle accumulation. This indicates that blood vessel characterization using contrast-enhanced ultrasound imaging or other methods could be valuable for patient stratification for treatment with nanomedicines.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectTumor characterizationen_US
dc.subjecticroscopyen_US
dc.subjectmicroCTMen_US
dc.subjectUltrasounden_US
dc.subjectMRIen_US
dc.subjectNanoparticlesen_US
dc.subjectTumor vasculatureen_US
dc.titleMulti-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft modelsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2018. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber292-305en_US
dc.source.volume279en_US
dc.source.journalJournal of Controlled Releaseen_US
dc.identifier.doi10.1016/j.jconrel.2018.04.026
dc.identifier.cristin1595466
cristin.unitcode7401,80,0,0
cristin.unitnameSINTEF Industri
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal