Vis enkel innførsel

dc.contributor.authorXu, Kaiqi
dc.contributor.authorChatzitakis, Athanasios Eleftherios
dc.contributor.authorVøllestad, Einar
dc.contributor.authorRuan, Qiushi
dc.contributor.authorTang, Junwang
dc.contributor.authorNorby, Truls Eivind
dc.date.accessioned2020-12-28T12:07:21Z
dc.date.available2020-12-28T12:07:21Z
dc.date.created2018-12-23T21:03:48Z
dc.date.issued2019
dc.identifier.citationInternational journal of hydrogen energy. 2019, 44 (2), 587-593.en_US
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11250/2721011
dc.description.abstractA solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectearth‐abundant materialsen_US
dc.subjectpolymer electrolytesen_US
dc.subjectwater vapor electrolysisen_US
dc.subjectsurface proton conductionen_US
dc.subjecttandem photoelectrocatalysisen_US
dc.subjectsolid‐state photoelectrochemical cellsen_US
dc.titleHydrogen from wet air and sunlight in a tandem photoelectrochemical cellen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors’ accepted and refereed manuscript to the article.This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseen_US
dc.source.pagenumber587-593en_US
dc.source.volume44en_US
dc.source.journalInternational journal of hydrogen energyen_US
dc.source.issue2en_US
dc.identifier.doi10.1016/j.ijhydene.2018.11.030
dc.identifier.cristin1647073
dc.relation.projectNorges forskningsråd: 250261en_US
dc.relation.projectNorges forskningsråd: 239211en_US
cristin.unitcode7401,80,62,0
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal