Vis enkel innførsel

dc.contributor.authorYu, Haiyang
dc.contributor.authorOlsen, Jim Stian
dc.contributor.authorAlvaro, Antonio
dc.contributor.authorqiao, lijie
dc.contributor.authorHe, Jianying
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2020-12-23T13:41:51Z
dc.date.available2020-12-23T13:41:51Z
dc.date.created2019-07-08T13:39:39Z
dc.date.issued2019
dc.identifier.issn0013-7944
dc.identifier.urihttps://hdl.handle.net/11250/2720968
dc.description.abstractHydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration, but the failure loci were found to follow the same trend dependent only on stress triaxiality, in other words, the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle, a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectVoid growthen_US
dc.subjectGurson modelen_US
dc.subjectHydrogen-microvoid interactionen_US
dc.subjectHydrogen enhanced localized plasticityen_US
dc.titleHydrogen informed Gurson model for hydrogen embrittlement simulationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).Ten_US
dc.source.pagenumber12en_US
dc.source.volume217en_US
dc.source.journalEngineering Fracture Mechanicsen_US
dc.identifier.doi10.1016/j.engfracmech.2019.106542
dc.identifier.cristin1710640
dc.relation.projectNorges forskningsråd: 234130en_US
dc.source.articlenumber106542en_US
cristin.unitcode7401,80,64,0
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal