Vis enkel innførsel

dc.contributor.authorJemblie, Lise
dc.contributor.authorOlden, Vigdis
dc.contributor.authorMaincon, Philippe Emmanuel
dc.contributor.authorAkselsen, Odd Magne
dc.date.accessioned2020-12-23T09:20:21Z
dc.date.available2020-12-23T09:20:21Z
dc.date.created2017-11-26T15:45:46Z
dc.date.issued2017
dc.identifier.citationInternational journal of hydrogen energy. 2017, 42 (47), 28622-28634.en_US
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11250/2720886
dc.description.abstractA coupled finite element hydrogen diffusion and cohesive zone modelling approach has been applied to simulate hydrogen induced fracture initiation in a hot rolled bonded clad steel pipe. The results are compared to experimental fracture mechanical testing in air and under in situ electrochemical hydrogen charging. A best fit to the experimental fracture initiation toughness value in air was achieved for an initial cohesive stiffness kn = 4·106 MPa/mm and a critical cohesive stress σc = 1210 MPa. For simulating under hydrogen influence, the hydrogen induced lowering of the cohesive energy was computed both in terms of the lattice concentration and the total concentration. Two different formulations for calculating the dislocation trap density were considered. The simulated results revealed that both hydrogen in lattice and hydrogen trapped at dislocations can be responsible for the observed hydrogen induced reduction in fracture initiation toughness. The choice of trap density formulation appeared significant only under the assumption that both lattice and trapped hydrogen infer an influence on the hydrogen induced lowering of the cohesive strength. Further effort is needed to provide a reliable description of the interface hydrogen content and distribution.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectCladdingen_US
dc.subjectClad pipeen_US
dc.subjectCohesive zone modellingen_US
dc.subjectHydrogen diffusionen_US
dc.subjectHydrogen embrittlementen_US
dc.titleCohesive zone modelling of hydrogen induced cracking on the interface of clad steel pipesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2017. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber28622-28634en_US
dc.source.volume42en_US
dc.source.journalInternational journal of hydrogen energyen_US
dc.source.issue47en_US
dc.identifier.doi10.1016/j.ijhydene.2017.09.051
dc.identifier.cristin1518512
dc.relation.projectNorges forskningsråd: 234110en_US
cristin.unitcode7401,80,64,0
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal