Vis enkel innførsel

dc.contributor.authorPANJWANI, Balram
dc.contributor.authorPETTERSEN, Torbjørn
dc.contributor.authorWITTGENS, Bernd
dc.date.accessioned2020-12-22T20:41:22Z
dc.date.available2020-12-22T20:41:22Z
dc.date.issued2020
dc.identifier.isbn978-82-536-1684-1
dc.identifier.issn2387-4295
dc.identifier.urihttps://hdl.handle.net/11250/2720852
dc.description.abstractFlue gas Recycling (FGR) is a well-known method for NOx reduction. A feasibility study is presented on the potential use of FGR in ferro-silicon production. The aim of the study is to illustrate how recycling of flue gas into the furnace for temperature control will affect local temperatures and NOx formation in the furnace hood (the flue gas combustion zone) of a conventional furnace design. Computational fluid dynamic (CFD) simulations using a generic model of a submerged arc furnace (SAF) developed in previously NFR financed projects like ProMiljø are performed. The SAF model consists of seven charging pipes, three electrodes and one flue gas stack. ANSYS FLUENT was used for modelling the interaction between process gas, ambient air, and flue gas. The simulation results show that introduction of recirculated flue gas affects the peak temperatures since the reduced oxygen concentration of flue gas significantly reduce the reaction rates compared to injection of air. A corresponding effect on NOx formation has been demonstrated, results indicate an order of magnitude reduction in NOx formation when recirculated flue gas ( 6vol% O2) is used in the combustion zone instead of air (21vol% O2). Simulations of the rapid increase in NOx production during an avalanche within the furnace is simulated using theoretical flow profiles. The effects of 1) recirculated flue gas, 2) rapid increase in the process gases from charging bed (burst), and 3) effect of radiation on NOx have been studied. The study showed that FGR has significant effect on NOx reduction. The study also showed that accounting for radiation is very relevant for an accurate estimation of NOx. The formation of process gas burst through a charging surface increase the rate of NOx formation.en_US
dc.language.isoengen_US
dc.publisherSINTEF Academic Pressen_US
dc.relation.ispartof14th International Conference on CFD in 6 Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, Norway, October 12–14, 2020
dc.relation.ispartofseriesSINTEF Proceedings;6
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectCFDen_US
dc.subjectOxen_US
dc.subjectRadiationen_US
dc.subjectCombustionen_US
dc.subjectFlue gas recycling - FGRen_US
dc.titleCONTROLLING FLUE GAS TEMPERATURE FROM FERRO SILICON SUBMERGED ARC FURNACES (SAF) USING FLUE GAS RECIRCULATION (FGR)en_US
dc.typeChapteren_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authors. Published by SINTEF Academic Press.en_US
dc.identifier.cristin1862931


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

CC BY
Med mindre annet er angitt, så er denne innførselen lisensiert som CC BY