Vis enkel innførsel

dc.contributor.authorKim, Taek Joong
dc.contributor.authorLang, Alexander
dc.contributor.authorChikukwa, Actor
dc.contributor.authorSheridan, Edel
dc.contributor.authorDahl, Paul Inge
dc.contributor.authorLeimbrink, Mathias
dc.contributor.authorSkiborowski, Mirko
dc.contributor.authorRoubroeks, Johannes
dc.date.accessioned2020-12-22T13:35:44Z
dc.date.available2020-12-22T13:35:44Z
dc.date.created2018-01-29T11:06:43Z
dc.date.issued2017
dc.identifier.citationEnergy Procedia. 2017, 114 17-24.en_US
dc.identifier.issn1876-6102
dc.identifier.urihttps://hdl.handle.net/11250/2720816
dc.description.abstractMembrane contactors offer a promising alternative to conventional CO2 absorption processes using columns. In a membrane contactor the advantages of absorption technology and membrane technology are combined as direct contact of the solution and gas feed stream is avoided by membrane barrier. In this study, the possibility of employing the enzyme carbonic anhydrase (CA) for the acceleration of CO2 reaction in MDEA and MEA solution in combination with the use of a membrane contactor was investigated in a lab scale module. The membranes employed in this study were microporous and specifically chosen to have both hydrophobic (bulk) and hydrophilic (surface) properties in order to avoid wetting of solution and reduce fouling by the enzymes simultaneously. By adding the enzyme carbonic anhydrase (CA), a significant improvement of CO2 absorption rate was observed in MDEA solution while a negative effect was observed in MEA solution. Meanwhile the porous hydrophobic membranes were coated with a highly selective poly(ionic liquids) layer increasing the affinity of CO2 towards the interfacial area and hence also the driving force. The concept may initially appear counter intuitive, as the dense membrane layer introduces an added resistance, however the active membrane material gave promising results and was observed to accelerate CO2 transport in MDEA solution. The combination of both enzyme and PILs resulted in synergies, which significantly improved CO2 absorption in MDEA solution.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectCO2en_US
dc.subjectPILsen_US
dc.subjectenzymeen_US
dc.subjectmembrane contactoren_US
dc.titleEnzyme Carbonic Anhydrase Accelerated CO2 Absorption in Membrane Contactoren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of GHGT-13. doi: 10.1016/j.egypro.2017.03.1141en_US
dc.source.pagenumber17-24en_US
dc.source.volume114en_US
dc.source.journalEnergy Procediaen_US
dc.identifier.doi10.1016/j.egypro.2017.03.1141
dc.identifier.cristin1554224
cristin.unitcode7401,80,0,0
cristin.unitcode7401,80,3,4
cristin.unitcode7401,80,3,1
cristin.unitnameSINTEF Materialer og kjemi
cristin.unitnameCO2 innfangningsprosesser
cristin.unitnameNye energiløsninger
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal