Vis enkel innførsel

dc.contributor.authorPolfus, Jonathan M.
dc.contributor.authorXing, Wen
dc.contributor.authorSunding, Martin Fleissner
dc.contributor.authorHanetho, Sidsel Meli
dc.contributor.authorDahl, Paul Inge
dc.contributor.authorLarring, Yngve
dc.contributor.authorFontaine, Marie-Laure
dc.contributor.authorBredesen, Rune
dc.date.accessioned2020-12-21T13:16:47Z
dc.date.available2020-12-21T13:16:47Z
dc.date.created2015-06-18T10:12:42Z
dc.date.issued2015
dc.identifier.citationJournal of Membrane Science. 2015, 482 137-143.en_US
dc.identifier.issn0376-7388
dc.identifier.urihttps://hdl.handle.net/11250/2720620
dc.description.abstractOxygen permeation measurements are performed on dense samples of CaTi0.85Fe0.15O3−δ, CaTi0.75Fe0.15Mg0.05O3−δ and CaTi0.75Fe0.15Mn0.10O3−δ in combination with density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) in order to assess Mg and Mn as dopants for improving the O2 permeability of CaTi1−xFexO3−δ based oxygen separation membranes. The oxygen permeation measurements were carried out at temperatures ranging between 700 and 1000 °C with feed side oxygen partial pressures between 0.01 and 1 bar. The O2 permeability was experimentally found to be highest for the Mn doped sample over the whole temperature range, reaching 4.2×10−3 ml min−1 cm−1 at 900 °C and 0.21 bar O2 in the feed which corresponds to a 40% increase over the Fe-doped sample and similar to reported values for x=0.2. While the O2 permeability of the Mg doped sample was also higher than the Fe-doped sample, it approached that of the Fe-doped sample above 900 °C. According to the DFT calculations, Mn introduces electronic states within the band gap and will predominately exist in the effectively negative charge state, as indicated by XPS measurements. Mn may therefore improve the ionic and electronic conductivity of CTF based membranes. The results are discussed in terms of the limiting species for ambipolar transport and O2 permeability, i.e., oxygen vacancies and electronic charge carriers.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectCalcium titanateen_US
dc.subjectCaTiO3en_US
dc.subjectMixed ionic-electronic conductionen_US
dc.subjectAmbipolar transporten_US
dc.subjectDense ceramic oxygen membraneen_US
dc.titleDoping strategies for increased oxygen permeability of CaTiO3 based membranesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors’ accepted and refereed manuscript to the article.This manuscript version is made available under the CC-BY-NC-ND 4.0 license DOI: https://doi.org/10.1016/j.memsci.2015.02.036en_US
dc.source.pagenumber137-143en_US
dc.source.volume482en_US
dc.source.journalJournal of Membrane Scienceen_US
dc.identifier.doi10.1016/j.memsci.2015.02.036
dc.identifier.cristin1249045
dc.relation.projectNotur/NorStore: nn9259ken_US
cristin.unitcode7401,80,3,2
cristin.unitcode7401,80,0,0
cristin.unitcode7401,80,6,2
cristin.unitcode7401,80,3,1
cristin.unitcode7401,80,3,3
cristin.unitcode7401,80,3,0
cristin.unitnameTynnfilm og membranteknologi
cristin.unitnameSINTEF Materialer og kjemi
cristin.unitnameMaterialfysikk. Oslo
cristin.unitnameNye energiløsninger
cristin.unitnameSorbentbaserte teknologier
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal