Vis enkel innførsel

dc.contributor.authorPolfus, Jonathan M.
dc.contributor.authorXing, Wen
dc.contributor.authorFontaine, Marie-Laure
dc.contributor.authorDenonville, Christelle
dc.contributor.authorHenriksen, Partow Pakdel
dc.contributor.authorBredesen, Rune
dc.date.accessioned2020-12-21T13:16:40Z
dc.date.available2020-12-21T13:16:40Z
dc.date.created2015-07-06T08:48:52Z
dc.date.issued2015
dc.identifier.citationJournal of Membrane Science. 2015, 479 39-45.en_US
dc.identifier.issn0376-7388
dc.identifier.urihttps://hdl.handle.net/11250/2720619
dc.description.abstractSome compositions of ceramic hydrogen permeable membranes are promising for integration in high temperature processes such as steam methane reforming due to their high chemical stability in large chemical gradients and CO2 containing atmospheres. In the present work, we investigate the hydrogen permeability of densely sintered ceramic composites (cercer) of two mixed ionic-electronic conductors: La27W3.5Mo1.5O55.5−δ (LWM) containing 30, 40 and 50 wt% La0.87Sr0.13CrO3−δ (LSC). Hydrogen permeation was characterized as a function of temperature, feed side hydrogen partial pressure (0.1–0.9 bar) with wet and dry sweep gas. In order to assess potentially limiting surface kinetics, measurements were also carried out after applying a catalytic Pt-coating to the feed and sweep side surfaces. The apparent hydrogen permeability, with contribution from both H2 permeation and water splitting on the sweep side, was highest for LWM70-LSC30 with both wet and dry sweep gas. The Pt-coating further enhances the apparent H2 permeability, particularly at lower temperatures. The apparent H2 permeability at 700 °C in wet 50% H2 was 1.1×10−3 mL min−1 cm−1 with wet sweep gas, which is higher than for the pure LWM material. The present work demonstrates that designing dual-phase ceramic composites of mixed ionic-electronic conductors is a promising strategy for enhancing the ambipolar conductivity and gas permeability of dense ceramic membranes.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectLanthanum chromiteen_US
dc.subjectLanthanum tungstateen_US
dc.subjectCeramic–ceramic compositeen_US
dc.subjectDense ceramic membraneen_US
dc.subjectHydrogen separationen_US
dc.titleHydrogen separation membranes based on dense ceramic composites in the La27W5O55.5–LaCrO3 systemen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors’ accepted and refereed manuscript to the article.This manuscript version is made available under the CC-BY-NC-ND 4.0 license DOI: https://doi.org/10.1016/j.memsci.2015.01.027en_US
dc.source.pagenumber39-45en_US
dc.source.volume479en_US
dc.source.journalJournal of Membrane Scienceen_US
dc.identifier.doi10.1016/j.memsci.2015.01.027
dc.identifier.cristin1252504
dc.relation.projectEU/280765en_US
dc.relation.projectNorges forskningsråd: 193816en_US
cristin.unitcode7401,80,3,2
cristin.unitcode7401,80,3,0
cristin.unitnameTynnfilm og membranteknologi
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal