• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF AS
  • Vis innførsel
  •   Hjem
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF AS
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solvent-Controlled Charge Storage Mechanisms of Spinel Oxide Electrodes in Mg Organohaloaluminate Electrolytes

Wang, Lu; Wang, Zhaohui; Vullum, Per Erik; Selbach, Sverre Magnus; Svensson, Ann Mari; Vullum-Bruer, Fride
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Nano+letters-Primary+manuscript.pdf (1.312Mb)
Nano+letters-Supporting+information.pdf (1.486Mb)
Permanent lenke
https://hdl.handle.net/11250/2720586
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Publikasjoner fra CRIStin - SINTEF AS [4397]
  • SINTEF Industri [1142]
Originalversjon
10.1021/acs.nanolett.7b03978
Sammendrag
Considering the improved safety, reduced cost, and high volumetric energy density associated with Mg batteries, this technology has distinct advantages for large-scale energy storage compared to other existing battery technologies. However, the divalency of the Mg2+ cation cause sluggish magnesiation kinetics in crystalline host materials, resulting in poor performance with regards to capacity and cycling stability for intercalation based electrodes. Here, we present a Mg battery using Mn3O4 as the electrode material and Mg metal as the counter electrode in a Mg organohaloaluminate electrolyte. The reversible capacity when Mn3O4 was used as cathode reached ∼580 mAh g–1 at a current density of 15.4 mA g–1, whereas a reversible capacity of ∼1800 mAh g–1 was obtained in an anode configuration. The Mn3O4 in a cathode configuration shows excellent cycling stability with no loss of capacity after 500 cycles at a current density of 770 mA g–1. As an anode, Mn3O4 retained 86% of its initial capacity after 200 cycles. These exceptional charge storage properties and high cycling stability are attributed to highly reversible interfacial reactions involving the electrolyte solvents. Our conclusions are supported by density functional theory calculations in addition to quantitative kinetics analysis and scanning transmission electron microscopy combined with energy dispersive spectroscopy and electron energy loss spectroscopy.
Utgiver
American Chemical Society
Tidsskrift
Nano letters (Print)
Opphavsrett
© American Chemical Society 2017. This is the authors accepted and refereed manuscript to the article.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit