• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF AS
  • View Item
  •   Home
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF AS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a coupled multi-scale, multi-physics simulation framework for aluminium electrolysis

Einarsrud, Kristian Etienne; Eick, Ingo; Bai, Wei; Feng, Yuqing; Hua, Jinsong; Witt, Peter J.
Peer reviewed, Journal article
Submitted version
Thumbnail
View/Open
APM-20161104.pdf (2.152Mb)
URI
https://hdl.handle.net/11250/2719729
Date
2017
Metadata
Show full item record
Collections
  • Publikasjoner fra CRIStin - SINTEF AS [4376]
  • SINTEF Industri [1127]
Original version
Applied Mathematical Modelling. 2017, 44 3-24.   10.1016/j.apm.2016.11.011
Abstract
Aluminium metal production through electrolytic reduction of alumina in a cryolite bath is a complex, multi-physics, multi-scale process, including magneto-hydrodynamics (MHD), bubble flow, thermal convection, melting and solidification phenomena based on a set of chemical reactions. Through interactions of the different forces applied to the liquid bath combined with the different time and length scales, self-organised fluctuations occur. Moreover, the MHD behaviour causes a complex metal pad profile and a series of surface waves due to the meta-stable condition of the metal/cryolite interface. The large aspect ratio of an industrial cell, with a footprint of 20 by 4 m and at the same time having dimensions approaching just 30 mm of height for the reaction zone, prevents an integrated approach where all relevant physics are included in a single mathematical model of this large degree of freedom system. In order to overcome these challenges, different modelling approaches have been established in ANSYS® FLUENT®; Three models are used to predict details of specific physics: one to predict the electro-magnetic forces and hence the metal pad profile, a second that resolves details of the local bubble dynamics around a single anode and a third for the full cell bath flow. Results from these models are coupled to allow integration of the different phenomena into a full cell alumina distribution model. The current paper outlines each of the approaches and presents how the coupling between them can be realized in a complete framework, aiming to provide new insight into the process.
Publisher
Elsevier
Journal
Applied Mathematical Modelling
Copyright
This is a submitted manuscript of an article published by Elsevier Ltd in Applied Mathematical Modelling, 2 December 2016.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit