Vis enkel innførsel

dc.contributor.authorChen, Xinzhi
dc.contributor.authorBleken, Francesca Lønstad
dc.contributor.authorLøvvik, Ole Martin
dc.contributor.authorVullum-Bruer, Fride
dc.date.accessioned2020-12-15T13:21:36Z
dc.date.available2020-12-15T13:21:36Z
dc.date.created2016-05-20T12:27:36Z
dc.date.issued2016
dc.identifier.citationJournal of Power Sources. 2016, 321 76-86.en_US
dc.identifier.issn0378-7753
dc.identifier.urihttps://hdl.handle.net/11250/2719581
dc.description.abstractPolyanion based silicate materials, MgMSiO4 (M = Fe, Mn, Co), previously reported to be promising cathode materials for Mg-ion batteries, have been re-examined. Both the sol-gel and molten salt methods are employed to synthesize MgMSiO4 composites. Mo6S8 is synthesized by a molten salt method combined with Cu leaching and investigated in the equivalent electrochemical system as a bench mark. Electrochemical measurements for Mo6S8 performed using the 2nd generation electrolyte show similar results to those reported in literature. Electrochemical performance of the silicate materials on the other hand, do not show the promising results previously reported. A thorough study of these published results are presented here, and compared to the current experimental data on the same material system. It appears that there are certain inconsistencies in the published results which cannot be explained. To further corroborate the present experimental results, atomic-scale calculations from first principles are performed, demonstrating that diffusion barriers are very high for Mg diffusion in MgMSiO4. In conclusion, MgMSiO4 (M = Fe, Mn, Co) olivine materials do not seem to be such good candidates for cathode materials in Mg-ion batteries as previously reported.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectDensity functional theoryen_US
dc.subjectOlivineen_US
dc.subjectCathode materialsen_US
dc.subjectMg-ion batteryen_US
dc.titleComparing electrochemical perormance of transition metal silicate cathodes and chevrel phase Mo6S8 in the analogous rechargeable Mg-ion battery systemen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2016. This is the authors’ accepted and refereed manuscript to the article. Locked until 5.5.2018 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber76-86en_US
dc.source.volume321en_US
dc.source.journalJournal of Power Sourcesen_US
dc.identifier.doi10.1016/j.jpowsour.2016.04.094
dc.identifier.cristin1356524
dc.relation.projectNotur/NorStore: NN2615Ken_US
dc.relation.projectNorges forskningsråd: 10411603en_US
cristin.unitcode7401,80,6,7
cristin.unitcode7401,80,6,0
cristin.unitnameNano-og hybridmaterialer
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal