Vis enkel innførsel

dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorJohansen, Stein Tore
dc.contributor.authorAmini, Shahriar
dc.date.accessioned2020-12-11T13:52:20Z
dc.date.available2020-12-11T13:52:20Z
dc.date.created2016-01-17T22:31:06Z
dc.date.issued2016
dc.identifier.citationPowder Technology. 2016, 289 65-70.en_US
dc.identifier.issn0032-5910
dc.identifier.urihttps://hdl.handle.net/11250/2718877
dc.description.abstractThis short communication builds on previous work on the grid independence behaviour of the Two Fluid Model in reactive bubbling fluidized bed simulations. Regarding hydrodynamic grid independence behaviour (the numerical accuracy with which phase segregation was resolved), the particle relaxation time was confirmed as being directly proportional to the cell size achieving sufficiently grid independent behaviour. This relationship held over different particle sizes, particle densities, gas densities, gas viscosities and drag laws, but the slope of the proportionality changed for particle relaxation times above 0.4. For reactive grid independence behaviour (the numerical accuracy with which reactor performance was resolved), the relationship between the particle relaxation time and the sufficiently grid independent cell size was more complex, depending not only on the resolution of phase segregation, but also on the kinetic rate implemented and on the permeability of the emulsion phase. Simple and practical rules of thumb were proposed for estimating the sufficiently grid independent cell size for hydrodynamic and reactive simulations. For most practical purposes, the simpler and more accurate hydrodynamic grid independent cell size correlation can safely be used to run sufficiently accurate bubbling fluidized bed reactor simulations.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectParticle relaxation timeen_US
dc.subjectGrid independenceen_US
dc.subjectBed reactoren_US
dc.subjectFluidizeden_US
dc.subjectTheory of Granular Flowsen_US
dc.subjectKineticen_US
dc.subjectTwo Fluid Modelen_US
dc.titleGrid independence behaviour of fluidized bed reactor simulations using the Two Fluid Model: Detailed parametric studyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2015. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber65-70en_US
dc.source.volume289en_US
dc.source.journalPowder Technologyen_US
dc.identifier.doi10.1016/j.powtec.2015.11.011
dc.identifier.cristin1315257
dc.relation.projectNorges forskningsråd: 197580en_US
cristin.unitcode7401,80,0,0
cristin.unitnameSINTEF Materialer og kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal