Vis enkel innførsel

dc.contributor.authorLi, Yue
dc.contributor.authorHolmedal, Bjørn
dc.contributor.authorLi, Hongxiang
dc.contributor.authorZhuang, Linzhong
dc.contributor.authorZhang, Jishan
dc.contributor.authorDu, Qiang
dc.date.accessioned2020-12-07T09:14:48Z
dc.date.available2020-12-07T09:14:48Z
dc.date.created2019-01-14T11:14:11Z
dc.date.issued2018
dc.identifier.citationMaterialia. 2018, 4 431-443.en_US
dc.identifier.issn2589-1529
dc.identifier.urihttps://hdl.handle.net/11250/2712101
dc.description.abstractFor an ICME (Integrated Computational Material Engineering) modeling framework used for the age-hardening aluminum alloy design and heat treatment parameters optimization, it is critical to take into account the geometric shape of precipitates, as it is tightly related to the precipitation kinetics and particles' hardening effect. The aim of this paper is to present such an ICME modeling approach to describe the precipitation of disk-shaped hardening particles during aging treatment and predict the final yield strength. The classical Kampmann–Wagner Numerical (KWN) model is extended to consider the influence of disk-shaped particle morphology on growth kinetics. The extension consists of two correction factors to the growth rate equation and to the Gibbs-Thomson effect. The extended model, coupled with a metastable thermodynamic database, is applied to simulate precipitation kinetics of Al-Cu and Al-Mg-Zn alloys during aging treatment. The predicted microstructural features are in reasonable agreement with the reported experimental observations. Furthermore, a strengthening model for disk-shaped particles, which considers the size distributions of precipitates, is developed. The predicted yield strengths are compared with reported tensile test results and with predictions from other strength models. Unlike other models, the proposed strength model can reveal the strength contribution from disk-shaped precipitates without an additional tuning parameter for accounting for the impact of the mean particle spacing in the slip plane.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectModelingen_US
dc.subjectMechanical propertiesen_US
dc.subjectPrecipitation kineticsen_US
dc.subjectDisk-shaped particlesen_US
dc.subjectAge-hardening alloysen_US
dc.titlePrecipitation and strengthening modeling for disk-shaped particles in aluminum alloys: Size distribution considereden_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder(c) This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber431-443en_US
dc.source.volume4en_US
dc.source.journalMaterialiaen_US
dc.identifier.doi10.1016/j.mtla.2018.11.001
dc.identifier.cristin1656058
dc.relation.projectNorges forskningsråd: 247783en_US
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal