Vis enkel innførsel

dc.contributor.authorSaai, Afaf
dc.contributor.authorWang, Zhaohui
dc.contributor.authorPezzotta, Micol
dc.contributor.authorFriis, Jesper
dc.contributor.authorRatvik, Arne Petter
dc.contributor.authorVullum, Per Erik
dc.date.accessioned2020-12-02T08:59:59Z
dc.date.available2020-12-02T08:59:59Z
dc.date.created2018-05-28T17:25:27Z
dc.date.issued2018
dc.identifier.citationLight Metals. 2018, 2018 1329-1336.en_US
dc.identifier.issn0147-0809
dc.identifier.urihttps://hdl.handle.net/11250/2711343
dc.description.abstractTitanium diboride (TiB2) is regarded as the most promising material to be used as inert cathodes in the electrochemical reduction of alumina to aluminium metal. TiB2 is well known as a ceramic material with high strength and durability characterized by a high melting point, high hardness, and excellent mechanical and chemical wear resistances. However, one concern with this material is the variability of its properties, depending on the processing procedures and the obtained microstructure (e.g. bulk density, secondary phases, grain size). In this work, a multiscale framework is used to evaluate the degradation of the TiB2 as a function of its microstructure. The mechanical and fracture parameters of TiB2 and its secondary phases were determined by the density functional theory and were implemented in a crystal elasticity-finite elements model. The influence of TiB2 grain size and the properties of the secondary phase on the mechanical properties and degradation mechanisms were predicted and discussed regarding the effects of material parameters identified at different scales.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesThe Minerals, Metals & Materials Series;2367-1181
dc.subjectDensity functional theoryen_US
dc.subjectFinite elementen_US
dc.subjectMultiscale modellingen_US
dc.subjectSecondary phaseen_US
dc.subjectGrains sizeen_US
dc.subjectTitanium diborideen_US
dc.subjectInert cathodeen_US
dc.titleMulti-scale Modelling of Titanium Diboride Degradation Using Crystal Elasticity Model and Density Functional Theoryen_US
dc.title.alternativeMulti-scale Modelling of Titanium Diboride Degradation Using Crystal Elasticity Model and Density Functional Theoryen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© The Minerals, Metals & Materials Society 2018. This is the authors accepted and peer-reviewed manuscript. The final version is available at SpringerLink: https://link.springer.com/chapter/10.1007%2F978-3-319-72284-9_174en_US
dc.source.pagenumber1329-1336en_US
dc.source.volume2018en_US
dc.source.journalLight Metalsen_US
dc.identifier.doi10.1007/978-3-319-72284-9
dc.identifier.cristin1587238
cristin.unitcode7401,80,6,6
cristin.unitcode7401,80,0,0
cristin.unitnameMaterial- og konstruksjonsmekanikk
cristin.unitnameSINTEF Materialer og kjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel