Vis enkel innførsel

dc.contributor.authorNunes, Daniela
dc.contributor.authorPimentel, Ana
dc.contributor.authorMatias, Mariana
dc.contributor.authorFreire, Tomas
dc.contributor.authorAraujo, A
dc.contributor.authorSilva, Filipe
dc.contributor.authorGaspar, Patricia
dc.contributor.authorGarcia, Silvia
dc.contributor.authorAlmeida Carvalho, Patricia
dc.contributor.authorFortunato, Elvira
dc.contributor.authorMartins, Rodrigo
dc.date.accessioned2020-11-26T11:10:47Z
dc.date.available2020-11-26T11:10:47Z
dc.date.created2019-06-03T14:26:00Z
dc.date.issued2019
dc.identifier.issn2079-4991
dc.identifier.urihttps://hdl.handle.net/11250/2689742
dc.description.abstractThe present study reports the production of upconverter nanostructures composed by a yttrium oxide host matrix co-doped with ytterbium and europium, i.e., Y2O3:Yb3+/Eu3+. These nanostructures were formed through the dissociation of yttrium, ytterbium and europium oxides using acetic, hydrochloric and nitric acids, followed by a fast hydrothermal method assisted by microwave irradiation and subsequent calcination process. Structural characterization has been carried out by X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and scanning electron microscopy (SEM) both coupled with energy dispersive X-ray spectroscopy (EDS). The acid used for dissociation of the primary oxides played a crucial role on the morphology of the nanostructures. The acetic-based nanostructures resulted in nanosheets in the micrometer range, with thickness of around 50 nm, while hydrochloric and nitric resulted in sphere-shaped nanostructures. The produced nanostructures revealed a homogeneous distribution of the doping elements. The thermal behaviour of the materials has been investigated with in situ X-Ray diffraction and differential scanning calorimetry (DSC) experiments. Moreover, the optical band gaps of all materials were determined from diffuse reflectance spectroscopy, and their photoluminescence behaviour has been accessed showing significant differences depending on the acid used, which can directly influence their upconversion performance.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectupconversionen_US
dc.subjectrare earth ionsen_US
dc.subjectdopingen_US
dc.subjectoxide dissociationen_US
dc.subjectmicrowave synthesisen_US
dc.titleTailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)en_US
dc.source.pagenumber16en_US
dc.source.volume9en_US
dc.source.journalNanomaterialsen_US
dc.source.issue2en_US
dc.identifier.doi10.3390/nano9020234
dc.identifier.cristin1702344
dc.relation.projectNorges forskningsråd: 275752en_US
dc.relation.projectEC/H2020/692373en_US
dc.relation.projectEC/H2020/685758en_US
dc.relation.projectNORTEM: 197405en_US
cristin.unitcode7401,80,62,0
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal