Vis enkel innførsel

dc.contributor.authorBock, Robert
dc.contributor.authorKaroliussen, Håvard
dc.contributor.authorSeland, Frode
dc.contributor.authorPollet, Bruno
dc.contributor.authorThomassen, Magnus
dc.contributor.authorHoldcroft, Steven
dc.contributor.authorBurheim, Odne Stokke
dc.date.accessioned2020-11-26T10:44:37Z
dc.date.available2020-11-26T10:44:37Z
dc.date.created2019-02-17T17:26:51Z
dc.date.issued2019
dc.identifier.citationInternational journal of hydrogen energy. 2019, 45 (2), 1236-1254.en_US
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11250/2689736
dc.description.abstractWater electrolyzers that use a membrane electrolyte between the electrodes are a promising technology towards mass production of renewable hydrogen. High power setups produce a lot of heat which has to be transported through the cell, making heat management essential. Knowing thermal conductivity values of the employed materials is crucial when modeling the temperature distribution inside an electrolyzer. The thermal conductivity was measured for different titanium-based porous transport layers (PTL) and a partially methylated Hexamethyl-p-Terphenyl Polybenzimidazolium (HMT-PMBI-Cl- membrane. The four titanium-based sintered transport layers materials have thermal conductivities between 1.0 and 2.5 0.2 WK−1m−1 at 10 bar compaction pressure. The HMT-PMBI-Cl- membrane has a thermal conductivity of 0.19 0.04 WK−1m−1 at 0% relative humidity at 10 bar compaction pressure and 0.21 0.03 WK−1m−1 at 100% relative humidity ( water molecules per ion exchange site at room temperature) at 10 bar compaction pressure. Combining the determined thermal conductivity values with data from the literature, 2D thermal models of a proton exchange membrane water electrolyzer (PEMWE) and an anion exchange membrane water electrolyzer (AEMWE) were built to evaluate the temperature distribution in the through-plane direction. A temperature difference of 7–17 K was shown to arise between the center of the membrane electrode assembly and bipolar plates for the PEMWE and more than 18 K for the AEMWE.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectTemperature distributionen_US
dc.subjectModelen_US
dc.subjectThermal conductivityen_US
dc.subjectAnion exchange membraneen_US
dc.subjectProton exchange membraneen_US
dc.subjectWater electrolysisen_US
dc.titleMeasuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modelingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.source.pagenumber1236-1254en_US
dc.source.volume45en_US
dc.source.journalInternational journal of hydrogen energyen_US
dc.source.issue2en_US
dc.identifier.doi10.1016/j.ijhydene.2019.01.013
dc.identifier.cristin1678040
dc.relation.projectNorges forskningsråd: 261620en_US
cristin.unitcode7401,80,62,0
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal