Vis enkel innførsel

dc.contributor.authorArnáiz del Pozo, Carlos
dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorCloete, Jan Hendrik
dc.contributor.authorJiménez Álvaro, Ángel
dc.contributor.authorAmini, Shahriar
dc.date.accessioned2020-11-13T13:23:19Z
dc.date.available2020-11-13T13:23:19Z
dc.date.created2020-01-13T13:10:35Z
dc.date.issued2019
dc.identifier.issn0196-8904
dc.identifier.urihttps://hdl.handle.net/11250/2687843
dc.description.abstractThis work presents a novel integrated gasification combined cycle (IGCC) power plant configuration for CO2 capture with minimal energy penalty. The proposed oxygen production pre-combustion (OPPC) power plant synergistically integrates a gas switching oxygen production (GSOP) unit into a pre-combustion IGCC power plant, reducing the energy penalty through two channels: 1) avoidance of a cryogenic air separation unit and 2) pre-heating the air sent to the combined power cycle, which reduces the steam requirement for shifting CO to H2 and the CO2 capture duty involved in pre-combustion CO2 capture. Relative to a conventional pre-combustion IGCC benchmark, the OPPC configuration improves the electric efficiency by about 6%-points, although the CO2 capture ratio reduces by about 6%-points. OPPC as avoids the maximum temperature limitation of Chemical Looping Combustion based plants, and can therefore benefit from efficient modern gas turbine technology operating at very high inlet temperatures. CO2 removal via physical absorption (Selexol) generally results in higher efficiencies, but lower CO2 avoidance than chemical absorption (MDEA). Plant efficiency also benefits from an increase in GSOP operating temperature, although the maximum temperature was limited to 900 °C to avoid any temperature-related challenges with oxygen carrier stability or downstream valves and filters. OPPC therefore appears to be a promising configuration for minimizing the energy penalty of CO2 capture in IGCC power plants, combining well known and proven technology blocks with a GSOP reactor cluster instead of an ASU.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S019689041931115X?via%3Dihub
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectPre-combustionen_US
dc.subjectIntegrated gasification combined cycleen_US
dc.subjectEfficiencyen_US
dc.subjectCO2 captureen_US
dc.subjectGas switching oxygen productionen_US
dc.titleThe oxygen production pre-combustion (OPPC) IGCC plant for efficient power production with CO2 captureen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2019 Elsevier Ltd. All rights reserved.en_US
dc.source.pagenumber20en_US
dc.source.volume201en_US
dc.source.journalEnergy Conversion and Managementen_US
dc.identifier.doi10.1016/j.enconman.2019.112109
dc.identifier.cristin1771405
dc.relation.projectEU/ERA-NET 276321en_US
dc.relation.projectEC/H2020/691712en_US
dc.source.articlenumber112109en_US
cristin.unitcode7401,80,40,0
cristin.unitnameProsessteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal