Vis enkel innførsel

dc.contributor.authorEliassen, Simen Nut Hansen
dc.contributor.authorFriis, Jesper
dc.contributor.authorRingdalen, Inga Gudem
dc.contributor.authorMousseau, Normand
dc.contributor.authorTrochet, Mickaël
dc.contributor.authorLi, Yanjun
dc.date.accessioned2020-11-13T13:22:58Z
dc.date.available2020-11-13T13:22:58Z
dc.date.created2019-11-27T17:32:52Z
dc.date.issued2019
dc.identifier.citationPhysical review B (PRB). 2019, 100 (15), .en_US
dc.identifier.issn2469-9950
dc.identifier.urihttps://hdl.handle.net/11250/2687841
dc.description.abstractThe energy conversion efficiency of solar cells based on multicrystalline silicon is greatly deteriorated by dislocations. However, an in-depth understanding on the dislocation motion dynamics down to atomic scale is still lacking. In this paper, we propose a novel atomistic approach to simulate the kink migration and kink-pair formation which govern dislocation motion in silicon, namely the kinetic activation-relax technique (k-ART). With this method, long timescale events can be simulated and complex energy landscapes can be explored. Four mechanisms for kink migration are observed, with total activation energy of 0.16, 0.25, 0.32, and 0.25 eV. New nontrivial kink structures that participate in kink migration are identified due to the open-ended search algorithm for saddle points in k-ART. In addition, a new pathway for kink-pair formation, with a minimum activation energy of 1.11 eV is discovered. The effect of shear stress on kink migration is also investigated. It shows that shear stress shifts the energy barriers of available events to lower energies, resulting in a change of the preferred kink-migration mechanism and a reduction of kink-pair formation energyen_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.titleAtomistic approach to simulate kink migration and kink-pair formation in silicon: The kinetic activation-relaxation techniqueen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© American Physical Society 2019. This is the authors accepted and refereed manuscript to the article.en_US
dc.source.pagenumber11en_US
dc.source.volume100en_US
dc.source.journalPhysical review B (PRB)en_US
dc.source.issue15en_US
dc.identifier.doi10.1103/PhysRevB.100.155305
dc.identifier.cristin1753368
dc.relation.projectNorges forskningsråd: 255326en_US
dc.relation.projectNorges forskningsråd: nn9158ken_US
cristin.unitcode7401,80,64,0
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel