Vis enkel innførsel

dc.contributor.authorGant, Francesco
dc.contributor.authorGruber, Andrea
dc.contributor.authorBothien, Mirko R.
dc.date.accessioned2020-11-12T14:01:03Z
dc.date.available2020-11-12T14:01:03Z
dc.date.created2020-09-21T15:02:17Z
dc.date.issued2020
dc.identifier.citationCombustion and Flame. 2020, 222 305-316.en_US
dc.identifier.issn0010-2180
dc.identifier.urihttps://hdl.handle.net/11250/2687652
dc.description.abstractNumerical simulations of laminar premixed flames burning hydrogen and methane in spontaneous ignition mode are performed by harmonically exciting the reactants’ temperature at the domain inlet. The results are compared to an analytical model representing the same reactive flow configuration. The model provides a simplified but nevertheless accurate representation of reheat combustion taking place in sequential gas turbine combustors. An analytic expression for autoignition flames transfer functions to entropy waves is derived and used to extend transfer function models from the literature. For validation purposes, results from fully compressible Direct Numerical Simulations (DNS), including a complete representation of the fluctuating acoustic and entropic fields of the reactive flow, are analyzed and compared to incompressible Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations that only take into account the fluctuating entropic field. Methane flames are found to be more sensitive to entropic forcing than hydrogen flames, featuring nonlinear phenomena even for low excitation amplitudes. In the linear regime, all flames behave as predicted by the analytical model and the URANS simulations are found to correctly predict the fluctuating entropic field. The transition from linear to nonlinear flame response is described in detail and its physical mechanisms are explained. Comparisons with results available in the literature show good prediction capabilities, both in terms of flame describing function and integrated heat release rate. Limitations of the proposed analytical model with respect to real combustion systems are discussed and a simple correction is proposed.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleDevelopment and validation study of a 1D analytical model for the response of reheat flames to entropy wavesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber305-316en_US
dc.source.volume222en_US
dc.source.journalCombustion and Flameen_US
dc.identifier.doi10.1016/j.combustflame.2020.09.005
dc.identifier.cristin1831757
dc.relation.projectEC/H2020/765998en_US
dc.relation.projectNorges forskningsråd: 257579en_US
dc.relation.projectNotur/NorStore: nn9527ken_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal