Vis enkel innførsel

dc.contributor.authorLind, Anna
dc.contributor.authorVistad, Ørnulv Bjørnsson
dc.contributor.authorSunding, Martin Fleissner
dc.contributor.authorAndreassen, Karin
dc.contributor.authorCavka, Jasmina Hafizovic
dc.contributor.authorGrande, Carlos Adolfo
dc.date.accessioned2020-10-29T07:12:29Z
dc.date.available2020-10-29T07:12:29Z
dc.date.created2020-09-15T18:05:43Z
dc.date.issued2020
dc.identifier.citationMaterials & design. 2020, 187 1-8.en_US
dc.identifier.issn0264-1275
dc.identifier.urihttps://hdl.handle.net/11250/2685558
dc.description.abstractThis work presents an example of the design and manufacture capabilities that 3D printing can introduce in catalysis. A multi-purpose catalyst, with fast heat and mass transfer and low-pressure drop has been designed and manufactured by 3D printing. The novelty of the methodology is the combination of advanced techniques for accurate control on the micropore-level allied with a generic framework for the design of macropore and structural levels. The ability to design ordered macroporous should be combined with adequate and controllable implantation of surface functionalities. With this combination of advanced techniques for macro and micro-pore control, it is possible to produce catalysts that unlock traditional trade-off compromises between diffusion, pressure drop and heat transfer. To demonstrate this novel methodology, we have designed and 3D printed a cubic iso-reticular foam in AlSi10Mg. After producing the support, its entire internal area was anodized to high-surface alumina followed by Pt deposition. We have verified the reproducibility of this technique by manufacturing a catalyst for a demonstrator with 8 m length. The test reaction was oxidation of NO to NO2 with the main aim to accelerate this reaction for additional recovery of energy in the production of nitric acid.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subject3D printingen_US
dc.subjectCatalysten_US
dc.subjectAnodizationen_US
dc.subjectProcess intensificationen_US
dc.subjectDiffusionen_US
dc.subjectHeat transferen_US
dc.titleMulti-purpose structured catalysts designed and manufactured by 3D printingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2019 The Author(s). Published by Elsevier Ltd.en_US
dc.source.pagenumber1-8en_US
dc.source.volume187en_US
dc.source.journalMaterials & designen_US
dc.identifier.doi10.1016/j.matdes.2019.108377
dc.identifier.cristin1830215
dc.relation.projectEC/H2020/680414en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal