Vis enkel innførsel

dc.contributor.authorSchrade, Matthias
dc.contributor.authorBerland, Kristian
dc.contributor.authorKosinskiy, Andrey
dc.contributor.authorHeremans, Joseph P.
dc.contributor.authorFinstad, Terje
dc.date.accessioned2020-10-22T07:55:17Z
dc.date.available2020-10-22T07:55:17Z
dc.date.created2019-10-08T23:47:27Z
dc.date.issued2020
dc.identifier.issn0021-8979
dc.identifier.urihttps://hdl.handle.net/11250/2684339
dc.description.abstractZrNiSn and related half Heusler compounds are candidate materials for efficient thermoelectric energy conversion with a reported thermoelectric figure-of-merit of n-type ZrNiSn exceeding unity. Progress on p-type materials has been more limited, which has been attributed to the presence of an impurity band, possibly related to Ni interstitials in a nominally vacant 4d position. The specific energetic position of this band, however, has not been resolved. Here, we report the results of a concerted theory-experiment investigation for a nominally undoped ZrNiSn, based on the electrical resistivity, the Hall coefficient, the Seebeck coefficient, and the Nernst coefficient, measured in a temperature range from 80 to 420 K. The results are analyzed with a semianalytical model combining a density functional theory (DFT) description for ideal ZrNiSn, with a simple analytical correction for the impurity band. The model provides a good quantitative agreement with experiment, describing all salient features in the full temperature span for the Hall, conductivity, and Seebeck measurements, while also reproducing key trends in the Nernst results. This comparison pinpoints the impurity band edge to 40 meV below the conduction band edge, which agrees well with a separate DFT study of a supercell containing Ni interstitials. Moreover, we corroborate our result with a separate study of the ZrNiSn0.9Pb0.1 sample showing similar agreement with an impurity band edge shifted to 32 meV below the conduction band.en_US
dc.language.isoengen_US
dc.publisherAIP Publishingen_US
dc.subjectZrNiSnen_US
dc.subjectImpuritiesen_US
dc.titleShallow Impurity Band in ZrNiSnen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Schrade et.al.Journal of Applied Physics 127, 045103 (2020); https://doi.org/10.1063/1.5112820 and may be found at Journal of Applied Physics > Volume 127, Issue 4 > https://doi.org/10.1063/1.5112820en_US
dc.source.pagenumber13en_US
dc.source.volume127en_US
dc.source.journalJournal of Applied Physicsen_US
dc.source.issue4en_US
dc.identifier.doi10.1063/1.5112820
dc.identifier.cristin1735230
dc.relation.projectNorges forskningsråd: 274164en_US
dc.relation.projectNorges forskningsråd: 228854en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel