Vis enkel innførsel

dc.contributor.authorClark, Simon
dc.contributor.authorMainar, Aroa R.
dc.contributor.authorIruin, Elena
dc.contributor.authorColmenares, Luis C.
dc.contributor.authorBlázquez, Alberto
dc.contributor.authorTolchard, Julian R
dc.contributor.authorJusys, Zenonas
dc.contributor.authorHorstmann, Birger
dc.date.accessioned2020-10-13T09:47:12Z
dc.date.available2020-10-13T09:47:12Z
dc.date.created2020-01-31T11:29:09Z
dc.date.issued2020
dc.identifier.issn1614-6832
dc.identifier.urihttps://hdl.handle.net/11250/2682407
dc.description.abstractAqueous zinc–air batteries (ZABs) are a low‐cost, safe, and sustainable technology for stationary energy storage. ZABs with pH‐buffered near‐neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at nonalkaline pH values. However, existing near‐neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide‐free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide‐free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. X‐ray diffraction, scanning electron microscopy, and energy dispersive X‐ray spectroscopy measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long‐term full cell cycling tests are performed, and rotating ring disk electrode measurements elucidate the mechanism of oxygen reduction reaction and oxygen evolution reaction. The analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc‐based batteries, due to their Zn2+ chelating and pH buffering properties. The remaining challenges including the electrochemical stability of the electrolyte components are discussed.en_US
dc.language.isoengen_US
dc.publisherPublished by WILEY-VCH Verlag GmbH & Coen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectZABen_US
dc.subjectZinc–air batteriesen_US
dc.subjectEnergy storageen_US
dc.subjectElectrolytesen_US
dc.titleDesigning Aqueous Organic Electrolytes for Zinc-Air Batteries: Method, Simulation, and Validationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authorsen_US
dc.source.pagenumber14en_US
dc.source.volume10en_US
dc.source.journalAdvanced Energy Materialsen_US
dc.identifier.doi10.1002/aenm.201903470
dc.identifier.cristin1787896
dc.relation.projectEC/H2020/646186en_US
cristin.unitcode7401,80,62,0
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal