Vis enkel innførsel

dc.contributor.authorKhadyko, Mikhail
dc.contributor.authorDumoulin, Stephane
dc.contributor.authorCailletaud, Georges
dc.contributor.authorHopperstad, Odd Sture
dc.date.accessioned2020-10-09T11:45:59Z
dc.date.available2020-10-09T11:45:59Z
dc.date.created2015-12-02T14:28:32Z
dc.date.issued2016
dc.identifier.citationInternational journal of plasticity. 2016, 76 51-74.en_US
dc.identifier.issn0749-6419
dc.identifier.urihttps://hdl.handle.net/11250/2682010
dc.description.abstractThe crystal plasticity theory predicts that hardening on a particular slip system and its corresponding work-hardening rate will depend on the slip activity on both this slip system and all others. The exact form of this dependence is defined by the latent hardening description in form of the latent hardening matrix or the interaction matrix. It has been assumed that this matrix describes the relative strength of various dislocation interactions and is therefore the same for a wide range of alloys with the same lattice structure. Different methods have been used to estimate the values of the interaction matrix components: one is experimental and uses strain-path changes; another simulates the dislocations dynamics in a crystal directly at the microscale and estimates the strength of the forming locks. In this work, the influence of the interaction matrix (and thus latent hardening) on the development of plastic anisotropy is studied. An extruded AA6060 alloy is tested in uniaxial tension in different directions and the anisotropy of the alloy is found to evolve considerably throughout the deformation. A crystal plasticity model is used to simulate the experimental tests, and the use of different interaction matrices is evaluated. A noticeable influence on the predicted evolution of plastic anisotropy as well as on the stress–strain field and slip inside the constituent grains is found.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectCrystal plasticityen_US
dc.subjectAnisotropic materialen_US
dc.subjectLatent hardeningen_US
dc.subjectFinite elementsen_US
dc.subjectDislocationsen_US
dc.titleLatent hardening and plastic anisotropy evolution in AA6060 aluminium alloyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright © 2015 Elsevier Ltd. This is the authors' accepted and refereed manuscript to the article.en_US
dc.source.pagenumber51-74en_US
dc.source.volume76en_US
dc.source.journalInternational journal of plasticityen_US
dc.identifier.doi10.1016/j.ijplas.2015.07.010
dc.identifier.cristin1296125
dc.relation.projectNorges forskningsråd: 237885en_US
cristin.unitcode7401,80,6,6
cristin.unitnameMaterial- og konstruksjonsmekanikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal