Vis enkel innførsel

dc.contributor.authorMarskar, Robert
dc.date.accessioned2020-08-11T12:47:22Z
dc.date.available2020-08-11T12:47:22Z
dc.date.created2019-04-24T08:57:48Z
dc.date.issued2019
dc.identifier.citationJournal of Computational Physics. 2019, 388 624-654.en_US
dc.identifier.issn0021-9991
dc.identifier.urihttps://hdl.handle.net/11250/2671505
dc.description.abstractWe review a scalable two- and three-dimensional computer code for low-temperature plasma simulations in multi-material complex geometries. Our approach is based on embedded boundary (EB) finite volume discretizations of the minimal fluid-plasma model on adaptive Cartesian grids, extended to also account for charging of insulating surfaces. We discuss the spatial and temporal discretization methods, and show that the resulting overall method is second order convergent, monotone, and conservative (for smooth solutions). Weak scalability with parallel efficiencies over 70% are demonstrated up to 8192 cores and more than one billion cells. We then demonstrate the use of adaptive mesh refinement in multiple two- and three-dimensional simulation examples at modest cores counts. The examples include two-dimensional simulations of surface streamers along insulators with surface roughness; fully three-dimensional simulations of filaments in experimentally realizable pin-plane geometries, and three-dimensional simulations of positive plasma discharges in multi-material complex geometries. The largest computational example uses up to 800 million mesh cells with billions of unknowns on 4096 computing cores. Our use of computer-aided design (CAD) and constructive solid geometry (CSG) combined with capabilities for parallel computing offers possibilities for performing three-dimensional transient plasma-fluid simulations, also in multi-material complex geometries at moderate pressures and comparatively large scale.en_US
dc.description.abstractAn adaptive Cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometriesen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAn adaptive Cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometriesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber624-654en_US
dc.source.volume388en_US
dc.source.journalJournal of Computational Physicsen_US
dc.identifier.doi10.1016/j.jcp.2019.03.036
dc.identifier.cristin1693582
dc.relation.projectNorges forskningsråd: 245422en_US
dc.relation.projectNortur/NorStore: NN9453Ken_US
cristin.unitcode7548,30,0,0
cristin.unitnameElkraftteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal