Vis enkel innførsel

dc.contributor.authorJordal, Kristin
dc.contributor.authorAnantharaman, Rahul
dc.contributor.authorGruber, Andrea
dc.contributor.authorPeters, Thijs
dc.contributor.authorHenriksen, Partow Pakdel
dc.contributor.authorBerstad, David Olsson
dc.contributor.authorBredesen, Rune
dc.date.accessioned2020-04-16T08:39:43Z
dc.date.available2020-04-16T08:39:43Z
dc.date.created2015-01-05T10:40:52Z
dc.date.issued2014
dc.identifier.citationEnergy Procedia. 2014, 63 2037-2044.en_US
dc.identifier.issn1876-6102
dc.identifier.urihttps://hdl.handle.net/11250/2651247
dc.description.abstractA main hurdle for realizing the IGCC with CO2 capture is the lack of gas turbines capable of burning hydrogen in an environmental-friendly, yet energy-efficient manner. With currently proposed combustion schemes an efficiency penalty is caused by the preparation (separation and compression) of the inert diluent, i.e. nitrogen. Distributed Fuel Injection (DFI), where hydrogen is provided to the combustion air through a H2-separating membrane or a porous wall, could be a means of avoiding both concentrated fuel point sources and N2 dilution of the fuel. The paper presents two potential schemes for DFI: Scheme 1 with upstream H2 separation and scheme 2 with integrated H2 separation from the shifted syngas. First process simulation results for an IGCC with a reheat gas turbine yielded an IGCC efficiency increase of 0.7%-points with Scheme 1 and of 1.3%-points with scheme 2, compared to a reference case with nitrogen fuel dilution. This is mainly due to savings in N2 compression work but for scheme 2 also because the partial pressure difference of H2 over the Pd membrane can be employed as driving force. The results should however be regarded as indicative only one of the reasons being that fuel injection pressure drop for DFI is yet unknown, and is presumably a trade-off between membrane/porous wall size.en_US
dc.language.isoengen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectIGCCen_US
dc.subjectDistributed fuel injectionen_US
dc.subjectPorous wallen_US
dc.subjectH2 membraneen_US
dc.titleGHGT-12 Performance of the IGCC with distributed feeding of H2 in the gas turbine burneren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe Authorsen_US
dc.source.pagenumber2037-2044en_US
dc.source.volume63en_US
dc.source.journalEnergy Procediaen_US
dc.identifier.doi10.1016/j.egypro.2014.11.219
dc.identifier.cristin1190286
dc.relation.projectNorges forskningsråd: 193816en_US
cristin.unitcode7548,60,0,0
cristin.unitcode7548,70,0,0
cristin.unitcode7401,80,3,2
cristin.unitcode7401,80,3,0
cristin.unitnameGassteknologi
cristin.unitnameTermisk energi
cristin.unitnameTynnfilm og membranteknologi
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal