Vis enkel innførsel

dc.contributor.authorAugustin, Matthias
dc.contributor.authorVullum, Per Erik
dc.contributor.authorVullum-Bruer, Fride
dc.contributor.authorSvensson, Ann Mari
dc.date.accessioned2020-01-24T14:54:19Z
dc.date.available2020-01-24T14:54:19Z
dc.date.created2019-05-01T18:57:34Z
dc.date.issued2019
dc.identifier.citationJournal of Power Sources. 2019, 414 130-140.nb_NO
dc.identifier.issn0378-7753
dc.identifier.urihttp://hdl.handle.net/11250/2637896
dc.description.abstractThis work investigates the impact of electrochemical reactions and products on discharge capacity and cycling stability with electrolytes based on two common solvents – tetraethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO). Although the DMSO-based electrolyte exhibits better initial electrochemical properties compared to that based on TEGDME, e.g., higher discharge capacity and potential, the use of TEGDME results in a significantly better cycling stability. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) investigations of the gas diffusion electrodes (GDE) after first discharge reveal a considerable difference in discharge product morphology. With DMSO as solvent one high-potential reduction process leads to the formation of crystalline lithium peroxide (Li2O2) particles on the cathode surface area. SEM imaging of GDE cross-sections depicts that the (non-crystalline) product film formation at lower potentials during discharge with the TEGDME-based electrolyte results in a GDE pore clogging close to the O2 inlet, so that gas transport is hindered and the discharge ends at an earlier point. The higher cycling stability with LiTFSI/TEGDME, however, is attributed to (i) the apparently complete recovery of the GDE active surface by recharge and (ii) different parasitic reactions resulting in the formation of side product particles rather than films.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectLithium/oxygen batteriesnb_NO
dc.subjectOxygen reduction reactionnb_NO
dc.subjectGas diffusion electrodenb_NO
dc.subjectDischarge productsnb_NO
dc.titleInside the electrode: Looking at cycling products in Li/O2 batteriesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.rights.holderPostprint version of article released under a CC-BY-NC-ND licensenb_NO
dc.source.pagenumber130-140nb_NO
dc.source.volume414nb_NO
dc.source.journalJournal of Power Sourcesnb_NO
dc.identifier.doi10.1016/j.jpowsour.2018.12.088
dc.identifier.cristin1694959
dc.relation.projectNORTEM: 197405nb_NO
cristin.unitcode7401,80,64,0
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal