Vis enkel innførsel

dc.contributor.authorDas, S.
dc.contributor.authorMilacic, E.
dc.contributor.authorPatel, H.V.
dc.contributor.authorDeen, N.G.
dc.contributor.authorKuipers, J.A.M.
dc.date.accessioned2018-01-29T17:03:30Z
dc.date.available2018-01-29T17:03:30Z
dc.date.issued2017
dc.identifier.isbn978-82-536-1544-8
dc.identifier.issn2387-4295
dc.identifier.urihttp://hdl.handle.net/11250/2480472
dc.description.abstractWe have investigated the dynamics of droplet spreading and liquid penetration at the surface of a porous medium at zero-gravity condition. A coupled IBM-VOF finite volume code has been used to perform pore-scale level fully resolved numerical simulations. The geometrical details of the solid porous matrix are resolved by a sharp interface immersed boundary method (IBM) on a Cartesian grid, whereas the motion of the gas-liquid interface is tracked by a mass conservative volume of fluid (VOF) method. At small scales, the contact line dynamics mainly govern the spreading and capillary penetration. In the present case, the motion of the gas-liquid interface at the immersed boundary is modeled by imposing the contact angle as a boundary condition at the threephase contact line. All the simulations are performed using a model porous structure that is approximated by a 3D cubic scaffold with cylindrical struts. The porosity (e) of the porous structure is varied from e = 0 (flat plate) to e = 0:65 and the equilibrium contact angle Q is varied from Q = 30X (hydrophilic) to Q = 135X (hydrophobic). The effect of porosity and contact angle on the transient evolution of penetration and spreading have been presented and compared with classical models.
dc.language.isoeng
dc.publisherSINTEF Academic Press
dc.relation.ispartofProgress in Applied CFD – CFD2017 Selected papers from 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries
dc.relation.ispartofseriesSINTEF Proceedings;2
dc.subjectThree phase flow
dc.subjectImmersed boundary method; IBM
dc.subjectVolume of Fluid; VOF
dc.subjectContact line dynamics
dc.subjectCapilary penetration
dc.titleA DNS study of droplet spreading and penetration on a porous medium
dc.title.alternativeProgress in Applied CFD. Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries
dc.typeChapter
dc.typeConference object
dc.typePeer reviewed
dc.description.versionpublishedVersion
dc.subject.nsiVDP::Technology: 500


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel