Vis enkel innførsel

dc.contributor.authorSaeedipour, Mahdi
dc.contributor.authorPuttinger, Stefan
dc.contributor.authorPirker, Stefan
dc.date.accessioned2018-01-28T16:08:09Z
dc.date.available2018-01-28T16:08:09Z
dc.date.issued2017
dc.identifier.isbn978-82-536-1544-8
dc.identifier.issn2387-4295
dc.identifier.urihttp://hdl.handle.net/11250/2480067
dc.description.abstractSlag entrainment during continuous casting process is a multiscale problem strongly dependent on the molten metal flow in the mold. Large-scale flow structures in the mold interact with the slag layer at the top of the meniscus, and small-scale liquid structures in the form of slag droplets may be entrained into the solidifying metal. In this work a large eddy simulation - volume of fluid (LES-VOF) approach is applied to investigate the unsteady flow interaction with the metal-slag-air interface including the interface instability, deformation of the slag layer and its entrainment into the molten metal. A benchmark experiment was designed to investigate the flow field in the proximity of a liquid-liquid interface for validation purposes. The experiment uses water and paraffinum liquidum to model the combination of liquid steel and the slag layer. While the entrainment of oil droplets can be visualized via shadowgraphy the flow field was measured via particle image velocimetry PIV. In combination, these two methods allow a qualitative and quantitative comparison of the unsteady flow characteristics with the CFD results. The measurement data at different inflow conditions have been used to validate the simulation results. We compare the global flow characteristics and mean velocity of submerged entry nozzle jet upon injection to the mold. Furthermore, the statistics of turbulence including velocity fluctuations and turbulent kinetic energy are used to investigate the unsteady jet interaction with the slag layer as well as liquid-liquid interface dynamics. The comparison of CFD results and experimental data reveals fairly good agreement both quantitatively and qualitatively.nb_NO
dc.language.isoengnb_NO
dc.publisherSINTEF Academic Pressnb_NO
dc.relation.ispartofProceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries
dc.relation.ispartofseriesSINTEF Proceedings;2
dc.subjectTwo-phase interfacial flownb_NO
dc.subjectLarge eddy simulation; LESnb_NO
dc.subjectVolume of Fluid; VOFnb_NO
dc.subjectParticle image velocimetry; PIVnb_NO
dc.subjectSlag entrainmentnb_NO
dc.subjectContinuous casting .nb_NO
dc.titleLES‐VOF simulation of turbulent interfacial flow in the continuous casting moldnb_NO
dc.typeChapternb_NO
dc.typeConference objectnb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.subject.nsiVDP::Technology: 500nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel