Vis enkel innførsel

dc.contributor.authorHöhne, Thomas
dc.contributor.authorKrepper, Eckhard
dc.contributor.authorLucas, Dirk
dc.date.accessioned2018-01-28T14:55:46Z
dc.date.available2018-01-28T14:55:46Z
dc.date.issued2017
dc.identifier.isbn978-82-536-1544-8
dc.identifier.issn2387-4295
dc.identifier.urihttp://hdl.handle.net/11250/2480058
dc.description.abstractThe paper presents the extension of the GENTOP model for phase transfer and discusses the sub-models used. Boiling flow inside a wall heated vertical pipe is simulated by a multi-field CFD approach. Sub-cooled water enters the pipe from the lower end and heats up first in the near wall region leading to the generation of small bubbles. Further along the pipe larger and larger bubbles are generated by coalescence and evaporation. This leads to transitions of the two-phase flow patterns from bubbly to churn-turbulent and annular flow. The CFD simulation bases on the recently developed GEneralized TwO Phase flow (GENTOP) concept. It is a multi-field model using the Euler-Euler approach. It allows the consideration of different local flow morphologies including transitions between them. Small steam bubbles are handled as dispersed phases while the interface of large gas structures is statistically resolved. The GENTOP sub-models and the Wall Boiling Model need a constant improvement and separate, intensive validation effort using CFD grade experiments.
dc.language.isoeng
dc.publisherSINTEF Academic Press
dc.relation.ispartofProgress in Applied CFD – CFD2017 Selected papers from 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries
dc.relation.ispartofseriesSINTEF Proceedings;2
dc.subjectMulti-phase
dc.subjectBoiling
dc.subjectGENTOP
dc.subjectMultiscale
dc.subjectCFD
dc.titleCFD‐simulation of boiling in a heated pipe including flow pattern transitions using a multi‐field concept
dc.title.alternativeProgress in Applied CFD. Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries
dc.typeChapter
dc.typeConference object
dc.typePeer reviewed
dc.description.versionpublishedVersion
dc.subject.nsiVDP::Technology: 500


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel