Vis enkel innførsel

dc.contributor.authorHammer, Morten
dc.contributor.authorAasen, Ailo
dc.contributor.authorWilhelmsen, Øivind
dc.date.accessioned2025-01-24T14:05:11Z
dc.date.available2025-01-24T14:05:11Z
dc.date.created2024-07-31T08:33:54Z
dc.date.issued2024
dc.identifier.issn0378-3812
dc.identifier.urihttps://hdl.handle.net/11250/3174332
dc.description.abstractThermodynamic properties of homogeneous fluids in the metastable and unstable regions are needed to describe confined fluids, interfaces, nucleating embryos and estimate critical mass flow rates. The most accurate equations of state (EoS) called multiparameter EoS, have a second, non-physical Maxwell loop that renders predictions unreliable in these regions. We elaborate how information from the stable region can be used to reconstruct the metastable and unstable regions. For a simple interaction potential, comparison to results from molecular simulations reveals that isochoric expansion of the pressure from stable states reproduces simulation results in the metastable regions. By constructing a dome that extends above the critical point, we obtain an extrapolated pressure from multiparameter EoS that is free of second Maxwell loops. A reconstructed EoS is developed next, by integrating the extrapolated pressure from a stable state to obtain the Helmholtz energy. The consistency of the reconstructed EoS is gauged by computing phase equilibrium densities, pressures, and enthalpies of evaporation, which are in reasonable agreement with experimental values. Combined with density gradient theory, the reconstructed EoS yields surface tensions of water, carbon dioxide, ammonia, hydrogen and propane that deviate, on average, 4.4%, 1.6%, 6.0%, 0.7% and 5.4% from experimental values respectively. The results reveal a potential to develop more accurate extrapolation protocols, which can be leveraged to obtain prediction of metastable properties, surface properties or used as constraints in fitting multiparmeter EoS.en_US
dc.description.abstractExtrapolating into no man's land enables accurate estimation of surface properties with multiparameter equations of stateen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExtrapolating into no man's land enables accurate estimation of surface properties with multiparameter equations of stateen_US
dc.title.alternativeExtrapolating into no man's land enables accurate estimation of surface properties with multiparameter equations of stateen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe Auhorsen_US
dc.source.volume586en_US
dc.source.journalFluid Phase Equilibriaen_US
dc.identifier.doi10.1016/j.fluid.2024.114196
dc.identifier.cristin2283801
dc.relation.projectNorges forskningsråd: 327056en_US
dc.relation.projectEC/H2020/101022487en_US
dc.relation.projectNorges forskningsråd: 262644en_US
dc.relation.projectEU – Horisont Europa (EC/HEU): 101115669en_US
dc.source.articlenumber114196en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal