Vis enkel innførsel

dc.contributor.authorGavriil, Konstantinos
dc.contributor.authorMuntingh, Agnar Georg Peder
dc.contributor.authorBarrowclough, Oliver Joseph David
dc.date.accessioned2025-01-21T14:12:32Z
dc.date.available2025-01-21T14:12:32Z
dc.date.created2019-05-09T13:08:44Z
dc.date.issued2019
dc.identifier.citationIEEE Geoscience and Remote Sensing Letters. 2019, 16 (10), 1645-1649.en_US
dc.identifier.issn1545-598X
dc.identifier.urihttps://hdl.handle.net/11250/3173613
dc.description.abstractIn recent years, advances in machine learning algorithms, cheap computational resources, and the availability of big data have spurred the deep learning revolution in various application domains. In particular, supervised learning techniques in image analysis have led to a superhuman performance in various tasks, such as classification, localization, and segmentation, whereas unsupervised learning techniques based on increasingly advanced generative models have been applied to generate high-resolution synthetic images indistinguishable from real images. In this letter, we consider a state-of-the-art machine learning model for image inpainting, namely, a Wasserstein Generative Adversarial Network based on a fully convolutional architecture with a contextual attention mechanism. We show that this model can be successfully transferred to the setting of digital elevation models for the purpose of generating semantically plausible data for filling voids. Training, testing, and experimentation are done on GeoTIFF data from various regions in Norway, made openly available by the Norwegian Mapping Authority.en_US
dc.language.isoengen_US
dc.publisherIEEE (Institute of Electrical and Electronics Engineers)en_US
dc.subjectFjernanalyseen_US
dc.subjectRemote sensingen_US
dc.subjectDigitale høydemodelleren_US
dc.subjectDigital elevation modelsen_US
dc.titleVoid Filling of Digital Elevation Models With Deep Generative Modelsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400en_US
dc.subject.nsiVDP::Mathematics and natural scienses: 400en_US
dc.source.pagenumber1645-1649en_US
dc.source.volume16en_US
dc.source.journalIEEE Geoscience and Remote Sensing Lettersen_US
dc.source.issue10en_US
dc.identifier.doi10.1109/LGRS.2019.2902222
dc.identifier.cristin1696634
dc.relation.projectNorges forskningsråd: 270922en_US
dc.relation.projectEC/H2020/675789en_US
cristin.unitcode7401,90,26,0
cristin.unitnameMathematics and Cybernetics
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel