Vis enkel innførsel

dc.contributor.authorDo, Nu Bich Duyen
dc.contributor.authorAndreassen, Erik
dc.contributor.authorEdwardsen, Stephen
dc.contributor.authorLifjeld, Anders
dc.contributor.authorAasmundtveit, Knut
dc.contributor.authorNguyen, Hoang-Vu
dc.contributor.authorImenes, Kristin
dc.date.accessioned2022-09-13T08:18:52Z
dc.date.available2022-09-13T08:18:52Z
dc.date.created2021-08-18T09:08:23Z
dc.date.issued2021
dc.identifier.citationExperimental heat transfer. 2021,1-18.en_US
dc.identifier.issn0891-6152
dc.identifier.urihttps://hdl.handle.net/11250/3017408
dc.description.abstractThis paper presents a thermal study of a double-layer encapsulation for an interventional medical device, which operates temporarily inside the human esophagus for cardiac imaging. The surface temperature of test samples, representing the device, was assessed by experiments and numerical simulations. The test samples consisted of a heat source, a heat sink and a double-layer encapsulation consisting of a 3D printed biocompatible polymer (thickness 0.9 mm), with an electroplated Cu inner layer (0, 10, 80 or 150 µm thick). The surface temperature of test samples was measured in a tissue-mimicking thermal phantom at 37°C, with different heat source power levels. Experimental results showed that the maximum steady-state surface temperature could be reduced significantly by a 10 µm thick Cu layer (compared to no Cu layer). Increasing the Cu layer thickness further had a rather small effect, at least for low power levels. The maximum steady-state surface temperature was an exponential function of the Cu layer thickness. Test samples with a Cu electroplated polymer encapsulation and a heat source power of 0.5 W satisfied the maximum temperature limit for thermal safety (43°C) when the Cu layer was thicker than about 80 µm. Simulated surface temperatures were in good agreement with experimental values, for a model using two different thermal contact conductance coefficients (for different materials) for the sample-phantom boundary condition. The simulation model was also used to suggest alternative materials for the outer layer of an encapsulation with a metal inner layer, for reducing the surface temperature.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francisen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectmetallized polymer encapsulationen_US
dc.subjectheat transferen_US
dc.subjectthermal managementen_US
dc.subjectthermal safetyen_US
dc.subjectInterventional medical deviceen_US
dc.titleThermal management of an interventional medical device with double layer encapsulationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 The Author(s). Published with license by Taylor & Francis Group, LLCen_US
dc.source.pagenumber18en_US
dc.source.journalExperimental heat transferen_US
dc.identifier.doi10.1080/08916152.2021.1946208
dc.identifier.cristin1926831
dc.relation.projectNorges forskningsråd: 295864en_US
dc.relation.projectNorges forskningsråd: 245963en_US
dc.relation.projectNorges forskningsråd: 269618en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal