Vis enkel innførsel

dc.contributor.authorCossar, Emily
dc.contributor.authorBarnett, Alejandro Oyarce
dc.contributor.authorSeland, Frode
dc.contributor.authorSafari, Reza
dc.contributor.authorBotton, Gianluigi A.
dc.contributor.authorBaranova, Elena A.
dc.date.accessioned2022-04-29T09:17:02Z
dc.date.available2022-04-29T09:17:02Z
dc.date.created2021-10-25T14:11:56Z
dc.date.issued2021
dc.identifier.citationJournal of Power Sources. 2021, 514, 230563, 12.en_US
dc.identifier.issn0378-7753
dc.identifier.urihttps://hdl.handle.net/11250/2993363
dc.description.abstractHydrogen production from anion exchange membrane water electrolysis (AEMWE) is an efficient cost-effective solution to renewable energy storage. Contrary to proton exchange membrane (PEM) electrolysis, AEMWE requires further optimization of its cell design, particularly for the kinetically unfavourable oxygen evolution anode half-cell reaction (OER). In this work we optimize the commercial Fumatech fumion ionomer content in AEMWE anodes using nickel (Ni) nanoparticles (NP) synthesized by chemical reduction. The optimal ionomer content is then applied to Ni-iron (Fe)-based NPs with and without ceria (CeO2), all prepared using the same method. Scanning Electron Microscopy (SEM) of the resulting electrode surfaces, Particle-size Distribution (PSD) of the catalyst inks, and in-situ testing of the monometallic Ni NPs show that the best and most active catalytic layer is obtained using 15 wt% ionomer. AEMWE performance and short-term durability are evaluated in different concentrations of potassium hydroxide (KOH), where the Ni90Fe10 is the best performing Ni-based electrode showing 1.72 V at 0.8 A cm−2 in 1 M KOH after IR-correction, and a degradation rate of 3.3 mV h−1. The addition of ceria to the Ni-based catalysts shows more consistent mass transfer over time likely due to more efficient water transport and bubble release.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectIonomer optimizationen_US
dc.subjectAnion exchange membrane water electrolysisen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectCeriaen_US
dc.subjectIronen_US
dc.subjectNickelen_US
dc.titleIonomer content optimization in nickel-iron-based anodes with and without ceria for anion exchange membrane water electrolysisen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseen_US
dc.source.pagenumber12en_US
dc.source.volume514en_US
dc.source.journalJournal of Power Sourcesen_US
dc.identifier.doi10.1016/j.jpowsour.2021.230563
dc.identifier.cristin1948290
dc.relation.projectNorges forskningsråd: 261620en_US
dc.source.articlenumber230563en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal