Vis enkel innførsel

dc.contributor.authorAnderson, Michael W
dc.contributor.authorGebbie-Rayet, James T.
dc.contributor.authorHill, Adam R.
dc.contributor.authorFarida, Nani
dc.contributor.authorAttfield, Martin P.
dc.contributor.authorCubillas, Pablo
dc.contributor.authorBlatov, Vladislav A.
dc.contributor.authorProserpio, Davide M.
dc.contributor.authorAkporiaye, Duncan
dc.contributor.authorArstad, Bjørnar
dc.contributor.authorGale, Julian D.
dc.date.accessioned2020-12-22T07:27:44Z
dc.date.available2020-12-22T07:27:44Z
dc.date.created2017-04-28T18:08:25Z
dc.date.issued2017
dc.identifier.citationNature. 2017, 544 (7651), 456-459.en_US
dc.identifier.issn0028-0836
dc.identifier.urihttps://hdl.handle.net/11250/2720675
dc.description.abstractUnderstanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years1,2,3,4,5, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy6,7,8. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system9,10,11. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into ‘natural tiles’ or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal–organic frameworks, calcite, urea and L-cystine.en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.titlePredicting crystal growth via a unified kinetic three-dimensional partition modelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright: the authors.This is the accepted manuscript. For the published article, see: Anderson, M., Gebbie-Rayet, J., Hill, A. et al. Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature 544, 456–459 (2017). https://doi.org/10.1038/nature21684en_US
dc.source.pagenumber456-459en_US
dc.source.volume544en_US
dc.source.journalNatureen_US
dc.source.issue7651en_US
dc.identifier.doi10.1038/nature21684
dc.identifier.cristin1467321
dc.relation.projectNorges forskningsråd: 233848en_US
cristin.unitcode7401,80,0,1
cristin.unitcode7401,80,3,3
cristin.unitnameAdministrasjon
cristin.unitnameSorbentbaserte teknologier
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2A


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel