Vis enkel innførsel

dc.contributor.authorBirenis, Domas
dc.contributor.authorOgawa, Yuhei
dc.contributor.authorMatsunaga, Hisao
dc.contributor.authorTakakuwa, Osamu
dc.contributor.authorYamabe, Junichiro
dc.contributor.authorPrytz, Øystein
dc.contributor.authorThøgersen, Annett
dc.date.accessioned2020-12-17T13:00:34Z
dc.date.available2020-12-17T13:00:34Z
dc.date.created2018-07-25T10:33:48Z
dc.date.issued2018
dc.identifier.citationActa Materialia. 2018, 156 245-253.en_US
dc.identifier.issn1359-6454
dc.identifier.urihttps://hdl.handle.net/11250/2720063
dc.description.abstractA new model for hydrogen-assisted fatigue crack growth (HAFCG) in BCC iron under a gaseous hydrogen environment has been established based on various methods of observation, i.e., electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI) and transmission electron microscopy (TEM), to elucidate the precise mechanism of HAFCG. The FCG in gaseous hydrogen showed two distinguishing regimes corresponding to the unaccelerated regime at a relatively low stress intensity factor range, ΔK, and the accelerated regime at a relatively high ΔK. The fracture surface in the unaccelerated regime was covered by ductile transgranular and intergranular features, while mainly quasi-cleavage features were observed in the accelerated regime. The EBSD and ECCI results demonstrated considerably lower amounts of plastic deformation, i.e., less plasticity, around the crack path in the accelerated regime. The TEM results confirmed that the dislocation structure immediately beneath the crack in the accelerated regime showed significantly lower development and that the fracture surface in the quasi-cleavage regions was parallel to the {100} plane. These observations suggest that the HAFCG in pure iron may be attributed to “less plasticity” rather than “localized plasticity” around the crack tip.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectTransmission electron microscopy (TEM)en_US
dc.subjectElectron back-scattered diffraction (EBSD)en_US
dc.subjectDislocation structuresen_US
dc.subjectHydrogen embrittlementen_US
dc.subjectFatigueen_US
dc.titleInterpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wakeen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the peer-reviewed, accepted manuscript of the article available at ScienceDirect: https://doi.org/10.1016/j.actamat.2018.06.041en_US
dc.source.pagenumber245-253en_US
dc.source.volume156en_US
dc.source.journalActa Materialiaen_US
dc.identifier.doi10.1016/j.actamat.2018.06.041
dc.identifier.cristin1598567
dc.relation.projectNORTEM: 197405en_US
cristin.unitcode7401,80,0,0
cristin.unitnameSINTEF Industri
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal