Vis enkel innførsel

dc.contributor.authorChatzitakis, Athanasios Eleftherios
dc.contributor.authorGrandcolas, Mathieu
dc.contributor.authorXu, Kaiqi
dc.contributor.authorMei, Sen
dc.contributor.authorYang, Juan
dc.contributor.authorJensen, Ingvild Julie Thue
dc.contributor.authorSimon, Christian
dc.contributor.authorNorby, Truls Eivind
dc.date.accessioned2020-12-16T12:02:07Z
dc.date.available2020-12-16T12:02:07Z
dc.date.created2016-12-26T21:45:33Z
dc.date.issued2017
dc.identifier.citationCatalysis Today. 2017, 287 161-168.en_US
dc.identifier.issn0920-5861
dc.identifier.urihttps://hdl.handle.net/11250/2719807
dc.description.abstractThe aim of this work has been the photoelectrochemical (PEC) study of nanostructured photoanodes based on TiO2. Highly ordered and well adhered TiO2 nanotubes (TNTs) of different lengths (∼2–20 μm) were prepared in a two-step process in ethylene glycol solutions containing fluorides, and detailed XPS analysis showed that they have become co-doped with C, N and F. PEC measurements revealed that increasing surface area is not followed by increase in the photoconversion efficiency, but rather that an optimal balance between electroactive surface area (ESA) and charge carrier concentration exists. TNTs of around 10 μm show the optimum incident photon-to-current efficiency (IPCE) of ∼33% and an overall photoconversion efficiency of ∼6.3% under UV illumination of 4 mW cm−2 light intensity. Finally, Mott-Schottky analysis revealed significant frequency dispersion of the estimated space charge layer capacitance, which renders the accurate estimation of the flatband position and charge carrier concentration unreliable. On the other hand, more realistic charge carrier concentrations can be obtained by normalizing the capacitance per ESA.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectMott-Schottkyen_US
dc.subjectWater splittingen_US
dc.subjectFrequency dispersionen_US
dc.subjectC,N,F codopingen_US
dc.subjectTiO2 nanotubesen_US
dc.subjectPhotoelectrochemistryen_US
dc.titleAssessing the photoelectrochemical properties of C, N, F codoped TiO2 nanotubes of different lengthsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors peer-reviewed and accepted manuscript. The final version is available at SpringerLink: https://www.sciencedirect.com/science/article/pii/S0920586116307945?via%3Dihuben_US
dc.source.pagenumber161-168en_US
dc.source.volume287en_US
dc.source.journalCatalysis Todayen_US
dc.identifier.doi10.1016/j.cattod.2016.11.040
dc.identifier.cristin1417390
dc.relation.projectNorges forskningsråd: 239211en_US
cristin.unitcode7401,80,6,7
cristin.unitcode7401,80,6,2
cristin.unitnameNano-og hybridmaterialer
cristin.unitnameMaterialfysikk. Oslo
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal