Vis enkel innførsel

dc.contributor.authorFrafjord, Jonas
dc.contributor.authorDumoulin, Stephane
dc.contributor.authorWenner, Sigurd
dc.contributor.authorRingdalen, Inga Gudem
dc.contributor.authorHolmestad, Randi
dc.contributor.authorFriis, Jesper
dc.date.accessioned2020-11-25T09:12:35Z
dc.date.available2020-11-25T09:12:35Z
dc.date.created2020-11-17T15:58:33Z
dc.date.issued2020
dc.identifier.citationComputational Materials Science. 2020, 187 .en_US
dc.identifier.issn0927-0256
dc.identifier.urihttps://hdl.handle.net/11250/2689482
dc.description.abstractThe β′′ precipitate is the main hardening phase in age hardenable Al-Mg-Si alloys, and it is therefore of major scientific and industrial importance. A full model of the β′′ precipitate cross-section embedded in an aluminium host lattice is created for a range of precipitate sizes, and relaxed by first principle calculations. The influence of periodic images is avoided by applying a cluster based model with fixed boundary conditions, where the surface is corrected by a displacement field calculated by linear elasticity theory. The calculated misfit values between the precipitate and the host lattice vectors are consistent with experimental scanning transmission electron microscopy results. The misfit area increases proportionally with the cross sectional area, suggesting that the lattice parameters of β′′ do not change as the size increases. Both the displacement field and the strain field are in agreement with experimental results. The strain field calculated by density functional theory shows a local zone close to the precipitate where the chemical contribution to the strain field is dominant. The strong correspondence between the experimental and the modelling results supports the methodology to be used in general to study other phases.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectTransmission electron microscopyen_US
dc.subjectDensity functional theoryen_US
dc.subjectStrainen_US
dc.subjectAluminium alloy precipitateen_US
dc.titleFully resolved strain field of the β’’ precipitate calculated by density functional theoryen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY licenseen_US
dc.source.pagenumber8en_US
dc.source.volume187en_US
dc.source.journalComputational Materials Scienceen_US
dc.identifier.doi10.1016/j.commatsci.2020.110054
dc.identifier.cristin1848896
dc.relation.projectNorges forskningsråd: 237885en_US
dc.relation.projectNORTEM: 197405en_US
dc.relation.projectNotur/NorStore: NN8068Ken_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal