Vis enkel innførsel

dc.contributor.authorKandhasamy, Sathiyaraj
dc.contributor.authorCalandrino, Luca
dc.contributor.authorBurheim, Odne Stokke
dc.contributor.authorSolheim, Asbjørn
dc.contributor.authorKjelstrup, Signe Helene
dc.contributor.authorHaarberg, Geir Martin
dc.date.accessioned2020-10-05T09:58:31Z
dc.date.available2020-10-05T09:58:31Z
dc.date.created2016-11-30T11:50:19Z
dc.date.issued2016
dc.identifier.citationECS Transactions. 2016, 75 (15), 171-179.en_US
dc.identifier.issn1938-5862
dc.identifier.urihttps://hdl.handle.net/11250/2681119
dc.description.abstractA thermocell (thermo-electrochemical cell) is an electrochemical system with two identical electrodes placed at different temperatures in an electrolyte solution. Ion transport between the electrodes due to the temperature gradient leads to thermoelectric power. These systems represent a promising pathway to utilize heat as a power source. A possible thermo-electrochemical cell with molten carbonate electrolyte and gas electrodes has been reported (1,2). The change in Seebeck coefficient (thermoelectric power) with electrode materials, electrode gas mixture, electrolyte composition and electrolyte support materials was studied (1). The addition of support material (solid oxide) in the molten carbonate electrolyte, may reduce the thermal conductivity and maintain the temperature gradient between the electrodes. Thermal boundary layers may arise due to the electrode gas flow rate; slow flow rate was preferred in the previous studies. In this study, the system is further studied to find an optimal ratio of electrolyte and support material, as well as electrode gas flow rate. The thermoelectric power is measured with various ratios of ((Li,Na)2CO3) molten carbonate mixed with solid oxide (MgO) in the electrolyte mixture and also with varying gas flow rates at the electrode-electrolyte interface.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleInfluence of electrode gas flow rate and electrolyte composition on thermoelectric power in molten carbonate thermocellen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber171-179en_US
dc.source.volume75en_US
dc.source.journalECS Transactionsen_US
dc.source.issue15en_US
dc.identifier.doi10.1149/07515.0171ecst
dc.identifier.cristin1406367
dc.relation.projectNorges forskningsråd: 228296en_US
cristin.unitcode7401,80,4,4
cristin.unitnameElektrolyse og høytemperaturmaterialer
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal