Vis enkel innførsel

dc.contributor.authorHammer, Morten
dc.contributor.authorMorin, Alexandre
dc.date.accessioned2020-02-28T12:16:38Z
dc.date.available2020-02-28T12:16:38Z
dc.date.created2014-05-19T13:42:46Z
dc.date.issued2014
dc.identifier.citationComputers & Fluids. 2014, 100 45-58.nb_NO
dc.identifier.issn0045-7930
dc.identifier.urihttp://hdl.handle.net/11250/2644376
dc.description.abstractCommon two-fluid models for pipe flow assume local non-equilibrium regarding phase transfer. To solve the two-fluid models together with accurate equations of state for real fluids will in most cases require mechanical, thermal and chemical equilibrium between the phases. The reason is that reference equations of state for real substances typically describe full thermodynamic equilibrium. In this paper, we present a method for numerically solving an equilibrium model analysed by Morin and Flåtten in the paper A two-fluid four-equation model with instantaneous thermodynamical equilibrium, 2013. The four-equation two-fluid model with instantaneous thermodynamical equilibrium is derived from a five-equation two-fluid model with instantaneous thermal equilibrium. The four-equation model has one mass equation common for both phases, but allows for separate phasic velocities. For comparison, the five-equation two-fluid model is numerically solved, using source terms to impose thermodynamical equilibrium. These source terms are solved using a fractional-step method. We employ the highly accurate Span-Wagner equation of state for CO2CO2, and use the simple and robust FORCE scheme with MUSCL slope limiting. We demonstrate that second-order accuracy may be achieved for smooth solutions, whereas the first-order version of the scheme even allows for a robust transition to single-phase flow, also in the presence of instantaneous phase equilibrium. Copyright © 2014 Published by Elsevier Ltd.nb_NO
dc.language.isoengnb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjecttwo-fluid modelnb_NO
dc.subjectfinite volumenb_NO
dc.subjectFORCE schemenb_NO
dc.subjectSpan-Wagner equation of statenb_NO
dc.subjectisochoric–isoenergetic flashnb_NO
dc.titleA method for simulating two-phase pipe flow with real equations of statenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber45-58nb_NO
dc.source.volume100nb_NO
dc.source.journalComputers & Fluidsnb_NO
dc.identifier.doi10.1016/j.compfluid.2014.04.030
dc.identifier.cristin1133438
dc.relation.projectNorges forskningsråd: 189978nb_NO
cristin.unitcode7548,60,0,0
cristin.unitnameGassteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal