Vis enkel innførsel

dc.contributor.authorNorberg, Andreas Nicolai
dc.contributor.authorWagner, Nils Peter
dc.contributor.authorKaland, Henning
dc.contributor.authorVullum-Bruer, Fride
dc.contributor.authorSvensson, Ann Mari
dc.date.accessioned2020-01-02T10:03:13Z
dc.date.available2020-01-02T10:03:13Z
dc.date.created2019-12-23T11:09:27Z
dc.date.issued2019
dc.identifier.citationRSC Advances. 2019, 9 41228-41239.nb_NO
dc.identifier.issn2046-2069
dc.identifier.urihttp://hdl.handle.net/11250/2634575
dc.description.abstractIn spite of its insulating nature, SiO2 may be utilized as active anode material for Li-ion batteries. Synthetic SiO2 will typically require sophisticated synthesis and/or activation procedures in order to obtain a satisfactory performance. Here, we report on diatom frustules as active anode material without the need for extensive activation procedures. These are composed primarily of silica, exhibiting sophisticated porous structures. Various means of optimizing the performance were investigated. These included carbon coating, the addition of fluoroethylene carbonate (FEC) and vinylene carbonate (VC) to the carbonate-based electrolyte, as well as activation by an initial potentiostatic hold step. The highest capacity (723 mA h g−1) was obtained with composite electrodes with pristine diatom frustules and conventional carbon black as additive, with the capacity still increasing after 50 cycles. The capacity was around 624 mA h g−1 after subtraction of the contributions from the carbon black. Carbon coated diatom frustules showed a slightly lower but stable capacity after 50 cycles (600 mA h g−1 after subtraction of contributions from the carbon coating and the carbon black). By the use of electrochemical characterization methods, as well as post-mortem studies, differences in reaction mechanisms could be identified and attributed to the operating and processing parameters.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Chemical Societynb_NO
dc.relation.urihttps://pubs.rsc.org/en/content/articlepdf/2019/ra/c9ra07271c
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectLi-ion batteriesnb_NO
dc.subjectAnode materialnb_NO
dc.subjectDiatom frustulesnb_NO
dc.titleSilica from diatom frustules as anode material for Li-ion batteriesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holderThis article is licensed under a Creative Commons Attribution 3.0 Unported Licence.nb_NO
dc.source.pagenumber41228-41239nb_NO
dc.source.volume9nb_NO
dc.source.journalRSC Advancesnb_NO
dc.identifier.doi10.1039/C9RA07271C
dc.identifier.cristin1763744
dc.relation.projectNorges forskningsråd: 282314nb_NO
dc.relation.projectNorges forskningsråd: 274969nb_NO
cristin.unitcode7401,80,0,0
cristin.unitcode7548,70,0,0
cristin.unitnameSINTEF Industri
cristin.unitnameTermisk energi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal