Vis enkel innførsel

dc.contributor.authorValderhaug, Vibeke Devold
dc.contributor.authorGlomm, Wilhelm
dc.contributor.authorSandru, Eugenia Mariana
dc.contributor.authorYasuda, Masahiro
dc.contributor.authorSandvig, Axel
dc.contributor.authorSandvig, Ioanna
dc.date.accessioned2019-10-25T09:13:25Z
dc.date.available2019-10-25T09:13:25Z
dc.date.created2019-10-23T10:06:04Z
dc.date.issued2019
dc.identifier.citationRoyal Society Open Science. 2019, 6 (10), .nb_NO
dc.identifier.issn2054-5703
dc.identifier.urihttp://hdl.handle.net/11250/2624397
dc.description.abstractIn vitroelectrophysiological investigation of neural activity at anetwork level holds tremendous potential for elucidatingunderlying features of brain function (and dysfunction). In standard neural network modelling systems, however, the fundamental three-dimensional (3D) character of the brain isa largely disregarded feature. This widely appliedneuroscientific strategy affects several aspects of the structure–function relationships of the resulting networks, alteringnetwork connectivity and topology, ultimately reducing thetranslatability of the results obtained. As these model systems increase in popularity, it becomes imperative that they capture,as accurately as possible, fundamental features of neuralnetworks in the brain, such as small-worldness. In this report,we combinein vitroneural cell culture with a biologicallycompatible scaffolding substrate, surface-grafted polymerparticles (PPs), to develop neural networks with 3D topology.Furthermore, we investigate their electrophysiological networkactivity through the use of 3D multielectrode arrays. Theresulting neural network activity shows emergent behaviour consistent with maturing neural networks capable of performing computations, i.e. activity patternssuggestive of both information segregation (desynchronized single spikes and local bursts)and information integration (network spikes). Importantly, we demonstrate that the resulting PP-structured neural networks show both structural and functional features consistent with small-worldnetwork topology.nb_NO
dc.language.isoengnb_NO
dc.publisherThe Royal Society Publishingnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectneural networksnb_NO
dc.subjectpolymer particlesnb_NO
dc.titleFormation of neural networks with structural and functional features consistent with small-world network topology on surface-grafted polymer particlesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© 2019 The Authors. Published by the Royal Society under the terms of the CreativeCommons Attribution License http://creativecommons.org/licenses/by/4.0/, which permitsunrestricted use, provided the original author and source are creditednb_NO
dc.source.pagenumber10nb_NO
dc.source.volume6nb_NO
dc.source.journalRoyal Society Open Sciencenb_NO
dc.source.issue10nb_NO
dc.identifier.doihttps://doi.org/10.1098/rsos.191086
dc.identifier.cristin1739752
cristin.unitcode7401,80,1,0
cristin.unitnameBioteknologi og nanomedisin
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal